«ԽԱՈւՍ» ՍՊԸ

Վնասակար նյութերի սահմանային թույլատրելի արտանետումների նախագիծ

brtylli

2020

Կատարողների ցուցակը

Անկախ փորձագետ

Ա. Դադայան

นบบกรนยาน

Սույն նախագծում ներկայացված են առաջարկություններ «ԽԱՈՒՍ» ՍՊԸ մթնոլորտն աղտոտող վնասակար նյութերի սահմանային թույլատրելի արտանետումների վերաբերյալ։

Աշխատանքում ի մի են բերվել ձեռնարկության որպես մթնոլորտն աղտոտող աղբյուրի արտանետումների որակական և քանակական բնութագրերը։

Ներկա աշխատանքում բերված են աղբյուրների սանիտարա-տեխնիկական հետազոտման, տեքստային, աղյուսակային, տվյալներ։ Կատարված է մթնոլորտն աղտոտող նյութերի ցրման հաշվարկը։

Այժմ ձեռնարկությունն ունի 2 արտադրահրապարակ, մթնոլորտն աղտոտող գործող 8 աղբյուր։

Կազմակերպությունում արտանետվում են` անօրգանական փոշի (SiO₂<20%) 3.0726տ/տ, ցեմենտի փոշի 2.0502տ/տ, անօրգանական փոշի (SiO₂-20-70%) 17.3322տ/տ։

Նյութերի ՍԹԱ նորմատիվներին հասնելու ժամկետները 2020 թվականն է։ Կազմակերպության կողմից արտանետումների հետևանքով շրջակա միջավայրին հասցվելիք վնասի մեծությունը հաշվարկվել է ՀՀ կառավարության 2005 թվականի հունվարի 25-ի N 91-Ն որոշման համաձայն։ Ցանկացած արտանետման աղբյուրի համար հասցված տնտեսական վնասն որոշվում է հետևյալ բանաձևով՝

$$U = C_q \Phi_8 \Sigma U_i P$$

Ա-ն ազդեցությունն է, արտահայտված Հայաստանի Հանրապետության դրամներով, c_{q} -ն աղտոտող աղբյուրի շրջապատի (ակտիվ աղտոտման գոտու) բնութագիրն արտահայտող գործակիցն է, որի արժեքը հավասար է 4

 \mathbf{u}_{i} -ն \mathbf{i} -րդ նյութի համեմատական վնասակարությունն արտահայտող մեծությունն է,

 $\mathbf{e}_{\mathbf{i}}$ -ն տվյալ (i-րդ) նյութի արտանետումների քանակի հետ կապված գործակիցն է

 Φ_8 -ն փոխադրման ցուցանիշն է, $\Phi_8 = 1000$ դրամ

Քլ գործակիցը որոշվում է հետևյալ բանաձևով՝

$$P_i = q(3 S_{Ui} - 2U \partial U_i)$$

որտեղ՝

ՍԹԱi -ն i-րդ նյութի սահմանային թույլատրելի տարեկան արտանետման քանակն է` տոննաներով,

SU լ-ն i-րդ նյութի տարեկան փաստացի արտանետումներն է` տոննաներով:

գ=1` անշարժ աղբյուրների համար

Շ_գ =4, Ф_Ց = 1000 դրամ

Կազմակերպությունում արտանետվում են`

Նյութերի անվանումը	₽ _i	\mathcal{C}^{d}	Фв	ų,	u
	ហ	•	դրամ		դրամ
Փոշի անօրգանական SiO ₂ <20%	3.0726	4	1000	10	122904
Փոշի անօրգանական SiO ₂ -20-70%	17.3322	4	1000	10	693288
Ցեմենտի փոշի	2.0502	4	1000	45	369036
ընդամենը					1185228

Տրամադրված արտանետման չափաքանակները մնում են ուժի մեջ, քանի դեռ աղտոտման անշարժ աղբյուրների և աղտոտող նյութերի մասով քանակական կամ որակական փոփոխություններ տեղի չեն ունեցել, ինչպես նաև տվյալ նյութերով ֆոնային գերնոր-մատիվային աղտոտվածություն չի առաջացել։ Ֆոնային գերնորմատիվային աղտոտվա-

ծության առաջացման հետ կապված արտանետման չափաքանակները վերանայվում են տրամադրման պահից 5 տարվանից ոչ շուտ։

<u> </u> ԲՈՎԱՆԴԱԿՈ ⊦ ԹՅՈ Ͱ Ն	
Անոտացիա	3
Բովանդակություն	4
Սերածություն	5
Ընդհանուր տեղեկություններ	5
ՕՊՕ-ի հաշվարկը	6
1-ին տարածք	
Ձեռնարկության պլան-սխեման	7-8
Կազմակերպության բնութագիրն որպես մթնոլորտն աղտոտող աղբյուր	9
Արտանետվող նյութերի անվանացանկը	10
ՍԹԱ հաշվարկի համար անհրաժեշտ նախնական տվյալներ	11
ՍԹԱ հաշվարկի համար անհրաժեշտ աղտոտող նյութերի պարամետրերը	11
Մեքենայական հաշվարկի բնութագիրը	13
Մթնոլորտի աղտոտման գործում ներդրում ունեցող աղբյուրների ցուցակը	14
Մթնոլորտում վնասակար նյութերի արտանետումների ցրման հաշվարկի արդյունքները	14
Մթնոլորտն աղտոտող վնասակար նյութերի արտանետումների նորմատիվները	15
Մեքենայական հաշվարկներ	16-33
2-րդ տարածք	
Ձեռնարկության պլան-սխեման	28-29
Արտանետվող նյութերի անվանացանկը	30
ՍԹԱ հաշվարկի համար անհրաժեշտ աղտոտող նյութերի պարամետրերը	31
Մթնոլորտի աղտոտման գործում ներդրում ունեցող աղբյուրների ցուցակը	33
Մթնոլորտում վնասակար նյութերի արտանետումների ցրման հաշվարկի արդյունքները	33
Մթնոլորտն աղտոտող վնասակար նյութերի արտանետումների նորմատիվները	34
Մեքենայական հաշվարկներ	41-51
Կազմակերպական-տեխնիկական միջոցառումներ անբարենպաստ կլիմայական պայմանների ժամանակ	52
Արտանետումների վերաիսկման և ՍԹԱ կատարման նպատակով նախատեսվող և իրականացվող միջոցառումներ	45
Գրականություն	53
կլիմայական տվյալներ ռելիեֆի գործակիցը	54

Ընկերությունն աարտադրական գործունեությունը իրականացնում է շինարարական աշխատանքների համար բետոնի շաղախ և բազալտի խիՃ ու ավազ ստանալու համար։ : Գտնվում է Երևան քաղաքում 2 արտադրահրապարակի վրա, վարձակալում է Սեբաստիայի փողոց 150,200/2 և Արշակունյաց փողոց 127/21 հասցեներում դտնվող 200մ² ու 300մ² տարածքները։ Այլ արտադրական կազմակերպությունների սահմանակից չէ, շրջակայքում նախադպրոցական և դպրոցական կազմակերպություններ, հիվանդանոցներ, սննդի օբյեկտներ, անտառներ, գյուղատնտեսական մշակահողեր և այլն չկան, բնակելի տարածքից հեռու ավելի քան 500մ։

Պետական ռեգիստրում գրանցման համարն է 264.110.1105542 , 2019.12.11.: Ձեռնարկության հասցեն է՝

Իրավաբանական` ք.Երևան,Հրաչա Քոչար փող.12. բն 9

ՕՊՕ-ի հաշվարկը

Համաձայն ՀՀ կառավարության 2012թ. դեկտեմբերի 27-ի N1673-Ն որոշման 2-րդ կետի 3-րդ ենթակետի` ՍԹԱ նորմատիվների նախագիծ կազմվում է այն տնտեսավարող սուբյեկտների համար, որոնք ունեն արտանետման այնպիսի աղբյուրներ, որոնց արտանետումների առավելագույն նախագծային ցուցանիշների հիման վրա հաշվարկված ՕՊՕ-ն մեկ տարում գերազանցում է երկու միլիարդ մ³ չափանիշը, կամ վայրկյանում գերազանցում է երկու հազար մ³ չափանիշը։

Ընկերությունում արտանետվում են`

Նյութերի անվանումը	Քանակը տ	ՕՊՕ մլրդ.մ ³ /տարի
Փոշի անօրգանական SiO ₂ <20%	3.0726	3.0726x10 ⁹ : 0.15=27.012
Փոշի անօրգանական SiO ₂ -20-70%	17.3322	17.3322 x10 ⁹ : 0.1=173.322
Ցեմենտի փոշի	2.0502	2.0502 x10 ⁹ : 0.1=20.502
ընդամենը		220.836

ԸՆԿԵՐՈͰԹՅԱՆ ԲՆՈͰԹԱԳԻՐՆ ՈՐՊԵՍ ՄԹՆՈԼՈՐՏՆ ԱՂՏՈՏՈՂ ԱՂԲՅՈͰՐ

Ընկերության արտադրական գործունեությունը նախատեսված է շինարարական աշխատանքների համար բետոնի շաղախ ու բազալտի խիձ և ավազ ստանալու համար:Արտադրությունն իրականացվում է 2 արտադրահրապարակներում։ Կիրառվում են բետոնի շաղախ ստանալու համար ամբողջ աշխարհում ընդունված տեխնոլոգիական գործընթացները, բաղադրամասերը և դրանց քանակները։

1-ին տարածք

Սեբաստիա փողոց 150, 200/2,

Ունի`

Իներտ նյութերի կուտակման բաց պահեստ

Ցեմենտի սիլոս

Բետոնի շաղախի պատրաստման հանգույց

Շինարարական բլոկների պատրաստման հանգույց

Կոտորակիչ

Բաց պահեստում կուտակվում են բետոնի շաղախի և շինարարական բլոկների արտադրության համար օգտագործվող ավազը և խիձը։ Արտանետվում են անօրգանական փոշի (SiO₂<20%), անօրգանական փոշի (SiO₂-20-70%)։

Ցեմենտի սիլոսից մղման ժամանակ արտանետվում է ցեմենտի փոշի։

Կազմակերպությունում տարեկան պատրաստվում է առավելագույնը 65000մ³ բետոնի շաղախ S-145 մակնիշով 40մ³/ժամ արտադրողականությամբ բետոնախառնիչ ունեցող հանգույցում, օգտագործվում է ցեմենտ, ավազ , խիՃ/բազալտի/։

1մ³ բետոնի լուծույթ ստանալու համար ծախսվում է`1050կգ խիճ, 920կգ ավազ, 440կգ ցեմենտ և համապատասխան քանակի ջուր։

Իներտ նյութերն դոզատորներով բեռնավորվում են բունկերների մեջ և փոխադրիչով տրվում բետոնախառնիչի մեջ։ Ցեմենտի սիլոսներից խառնիչի մեջ է տրվում նաև ցեմենտը։ Զուրը ևս բեռնավորվում է դոզատորով։

Արտանետվում են անօրգանական փոշի (SiO_2 <20%), անօրգանական փոշի (SiO_2 -20-70%) և ցեմենտի փոշի:

Բլոկների տեղամասում տեղադրված բետոնախառնիչն ունի 6մ³ տարողություն. բեռնավորվում է համապատասխան քանակի ավազով, ցեմենտով և ջրով, պատրաստվում է բետոնի շաղախ, որը լցվում է կաղապարների մեջ և չորացվում է բնական եղանակով։

Կոտորակիչով պատրաստվում են բազալտի ավազ և խիձ։ Տարեկան արտադրվում է 15000մ³ բազալտի ավազ և խիձ։Կոտորակումից առաջ բազալտի հումքը խոնավեցվում է։

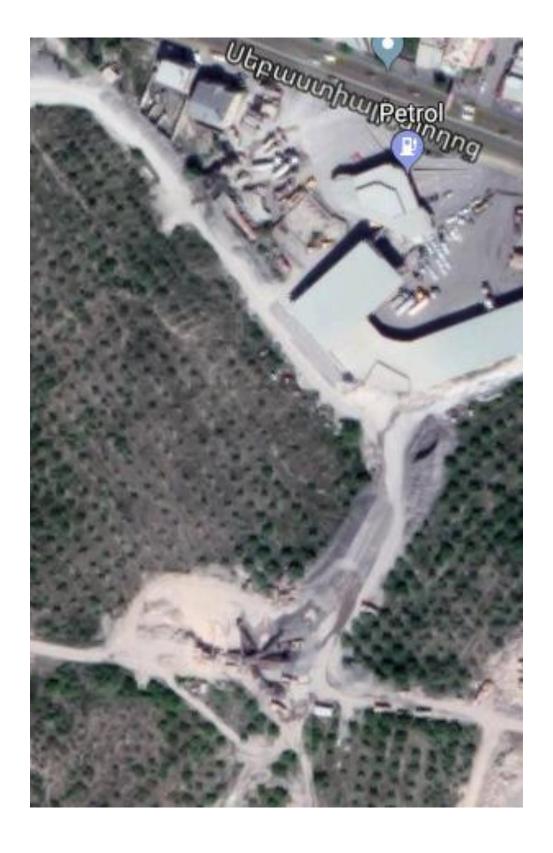
25մ տրամագծով N5 հարթակային անկազմակերպ աղբյուրից արտանետվում է անօրգանական փոշի/բազալտի/։ Կոտորակումից հետո սստացված խիձը և ավազը օգտագործվում են բետոնի շաղախի արտադրությունում։

2-րդ տարածք Արշակունյաց 127/21

Ունի`

Իներտ նյութերի կուտակման բաց պահեստ

Ցեմենտի 2 սիլոս


բետոնի շաղախի պատրաստման հանգույց

Բաց պահեստում կուտակվում են բետոնի շաղախի արտադրության համար օգտագործվող ավազը և խիձը։ Արտանետվում է անօրգանական փոշի (SiO₂-20-70%)։

Ցեմենտի սիլոսից մղման ժամանակ արտանետվում է ցեմենտի փոշի։Նույն պարամետրերն ունենալու պատձառով 2 սիլոսներն միավորվել են որպես 1 աղբյուր։

Կազմակերպությունում տարեկան պատրաստվում է առավելագույնը 60000մ³ բետոնի շաղախ S-145 մակնիշով 40մ³/ժամ արտադրողականությամբ բետոնախառնիչ ունեցող հանգույցում, օգտագործվում է ցեմենտ, բազալտի ավազ և խիՃ։

Արտանետվում են անօրգանական փոշի (SiO₂-20-70%) և ցեմենտի փոշի։

Պատվիրատու՝ ազգանուն, (անվանում) Մեբաստիա փողոց h. ք.Երևան **U**шрq Մասշտաբ 1:500 0006 Վարձակալվող հողամաս 200.0քմ։ 10 10 20 70 Սեբաստիա 200/2 Սեբաստիա 150 1.Բաց պահեստ 2.Սիլոս 3.Բետոնախառնիչ 4. բլոկների տեղամաս. 5.Կոտորակիչ կավորման վկայականի «LU-At AMADA» UMA վաբանական անձի

Հողասասի Հաջակագոծ

1-ին տարածք Սեբաստիայի 200/2, 150 ՄԹՆՈԼՈՐՏ ԱՐՏԱՆԵՏՎՈՂ ՎՆԱՍԱԿԱՐ ՆՅՈՐԹԵՐԻ ԱՆՎԱՆԱՑԱՆԿԸ

Աղյուսակ 1

Նյութի անվանումը	ՍԹԿառավելագույն միանվագ	Վտանգավո- րության	Արտանետում- ները
	մգ/մ ³	դասը	տ/տարի
Փոշի անօրգանական	0.5	3	3.0726
SiO ₂ <20%			
Փոշի անօրգանական	0.3	3	15.1902
SiO ₂ -20-70%			
Ցեմենտի փոշի	0.3	3	0.9792

Գումարային հատկությամբ նյութերը բացակայում են

Կազմակերպության արտադրական գործընթացներում զարկային արտանետումներ չեն առաջանում, այդ պատձառով 2-րդ աղյուսակը չի լրացվում։

ԵԼԱԿԵՏԱՅԻՆ ՏՎՅԱԼՆԵՐ ՍԹԱ ՀԱՇՎԱՐԿԻ ՀԱՄԱՐ

Կատարվել է մթնոլորտն աղտոտող նյութերի աղբյուրների գույքագրում։ Ըստ գույքագրման արդյունքի ՍԹԱ հաշվարկի ելակետային տվյալները կազմվել և հաշվարկվել են ԳՕՍՏ 17.2.3.02-78 –ի պահանջներին համապատասխան և բերված են 3.3 աղյուսակում։

Հաշվարկները կատարվել են «Տարբեր արտադրությունների կողմից մթնոլորտն աղտոտող նյութերի արտանետումների հաշվարկի մեթոդիկան» ժողովածուի հիման վրա։

Նստեցման անչափելի գործակիցն ընդունվել է` գազանման վնասակար նյութերի և մանր դիսպերսության աերոզոլների համար, որոնց նստեցման կարգավորված արագությունը չի գերազանցում 3-5 սմ/վրկ` 1, խոշոր դիսպերսության փոշու համար մաքրման բացակայության դեպքում`3, որսման դեպքում`2 :

ՍԹԱ ՀԱՇՎԱՐԿԻ ՀԱՄԱՐ ԱՆՀՐԱԺԵՇՏ ԱՂՏՈՏՈՂ ՆՅՈͰԹԵՐԻ ՊԱՐԱՄԵՏՐԵՐԸ

աղյուսակ 3

Արտադրու- թյուն, արտադրամաս	Աղտոտող նյութերի առաջացման աղբյուրները			Աշխատաժամը տարում		Արտանետման աղբյուրների անվանումը		Աղբյուների քանակը		Աղբյուրի համարը	
	Անվանումը	Քան	ակը								
		ՆՎ	<	ՆՎ	<	ՆՎ	<	ՆՎ	<	ՆՎ	<
	l	1			I I		l				
Ըաց պահեստ	Իներտ նյութերի կուտակում		1	4500		անկազմակերպ		1		1	
Սիլոս	Ցեմենտի մղում	,	1		1700		խողովակ			2	
Բետոնի շաղախի	Բետոնախառնիչ	,	1	1700		խողովակ		1		1	
Շինարարական բլոկների պատրաստում	Բետոնախառնիչ	,	1	1600		խողովակ		1		4	
Կոտորակիչ	Խձի և ավազի ստացում		1	170	00	անկւ	սզմակերպ	1		5	

<u>3-րդ աղյուսակի շարունակությ</u>ունը

Աղբյուր կարգա			շյուրի ությունը, մ	Տրամագիծ մ	ը,	Գազաօդային խառնուրդի պարամետրերը արտանետման աղբյուրի ելքում						
	,		արագությունը մ/վրկ		ծավալը մ³/վրկ		ջերմս	սստիձանը				
ՆՎ	<	ՆՎ	<	ՆՎ	<	ՆՎ	۷	ՆՎ	4	ՆՎ	4	
11	12	13	14	15	16	17	18	19	20	21		
1		5		20		3		942.48		20		
2		15		0.01		15		0.0012		20		
3		4.5		2.5		10		49.087		20		
4		4	· · · · · · · · · · · · · · · · · · ·	1.5		12		21.205		20		
5		9		25		12		5890.48		20		

3-րդ աղյուսակի շարունակությունը

Աղբյու կարգալ		Чnnr	ոդինատնե	նին քա	րտեզո	ւմ, մ	Գազերը մա անվանումը	քրող սարքերի	Մաքրվող	նյութերը		Մաքրման միջին շահագործման աստիՃանը	
		աղբ աղբյո կենւ գծայ	ոային շյուրի, ւր. խմբի տրոնի, ին աղբ. Ծայրի		ին աղբ րդ ծայ			Ապահովվա գործակի			Մաքրման առ	ան առավելագույն չափը, %	
ՆՎ	<	X_1	Y_1	X_2	Y	2	ՆՎ	4	ՆՎ	<	ՆՎ	<	
11	12	23	24	25	26	27	28	29	30	31		32	
1		5	5	25	10								
2		20	10										
3		15	12										
4		10	8										
5		70	7	95	12								

3-րդ աղյուսակի շարունակությունը

Աղբյուրի		Նյութի անվանումը		Աղտ	ոտող նյութեր	ի արտանեւ	տումները		ԱԹԱ հանելու տարին			
կարգաթի	կարգաթիվը			ՆՎ			الهر (Ual					
ՆՎ	<		գ/վ	մգ/մ³	տ/տարի	գ/վ	մգ/մ³	տ/տարի				
11	12	33	34	35	36	37	38	39	40			
1		Անօրգան. փոշի(SiO ₂ <20%)	0.15	0.16	2.43	0.15	0.16	2.43	2018			
		Անօրգան. փոշի(SiO ₂ -20-70%)	0.15	0.16	2.43	0.15	0.16	2.43				
2		Ցեմենտի փոշի	0.05	42441	0.306	0.05	42441	0.306	2018			
3		Անօրգան. փոշի(SiO ₂ <20%)	0.075	1.53	0.459	0.075	1.53	0.459	2018			
		Անօրգան. փոշի(SiO ₂ -20-70%)	0.075	1.53	0.459	0.075	1.53	0.459				
		Ցեմենտի փոշի	0.1	2.04	0.612	0.1	2.04	0.612				
4		Անօրգան. փոշի(SiO ₂ <20%)	0.03	1.43	0.1836	0.03	1.43	0.179	2018			
		Անօրգան. փոշի(SiO ₂ -20-70%)	0.01	0.47	0.0612	0.01	0.47	0.0576				
		Ցեմենտի փոշի	0.01	0.47	0.0612	0.01	0.47	0.0576				
5		Անօրգան. փոշի(SiO ₂ -20-70%)	2.0	0.34	12.24	2.0	0.34	12.24	2018			

ՄԵՔԵՆԱՅԱԿԱՆ ՀԱՇՎԱՐԿԻ ԲՆՈՒԹԱԳԻՐԸ

Մթնոլորտում վնասակար նյութերի ցրվածության հաշվարկները կատարելու համար Ճշգրտված և ուղղված տվյալների հիման վրա կազմվել են ՍԹԱ հաշվարկի ելակետային տվյալները։

Վնասակար նյութերով մթնոլորտի աղտոտվածության հաշվարկը կատարվել է «Ռադուգա» մեքենայական ծրագրով, որը առաջարկված է օգտագործման նախկին ԽՍՀՄ Հիդրոմետ Պետական Վարչության կողմից։

Գետնամերձ խտությունների բաշխման որոշումը կատարվել է 1000 × 1000մ քառակուսում, 100մ քայլով։

ՕԴԵՐԵՎՈͰԹԱԲԱՆԱԿԱՆ ԲՆՈͰԹԱԳՐԵՐԸ, ՑՐՄԱՆ ՊԱՅՄԱՆՆԵՐՆ ՈՐՈՇՈՂ ԳՈՐԾԱԿԻՑՆԵՐԸ։ ՍԿԶԲՆԱԿԱՆ ՏՎՅԱԼՆԵՐԸ

Ցրման պայմանները որոշող օդերևութաբանական բնութագրերը և գործակիցները ներկայացված են ստորև բերված աղյուսակում։ Սահմանային թույլատրելի առավելագույն միանվագ խտությունները /կոնցենտրացիաները/ վերցված են ՀՀ կառավարության 2006թ. փետրվարի 2-ի N 160-Ն որոշմամբ հաստատված ցանկից։

นา3กะบน५ 4

Բնութագրերի անվանումը	մեծությունը	
Մթնոլորտի ստրատիֆիկացիայից կախված գործակիցը	200	
Տեղանքի ռելյֆի գործակիցը	1.0	
Տարվա ամենատաք ամսվա միջին առավելագույն	33.3	
ջերմաստիՃանը		
Միջին տարեկան <<քամիների վարդը>> %-ով		
Հյուսիս	8	
Հյուսիս-արևելք	17	
Արևելք	8	
Հարավ-արևելք	12	
Հարավ	20	
Հարավ-արևմուտք	19	
Արևմուտք	11	
Հյուսիս-արևմուտք	5	
Քամու արագությունը, որի գերազանցման կրկնությունը	3.5 մ/վրկ	
կազմում է 5%		

Քամու բազմամյա միջին առավելագույն արագությունը (/մ/վ), որը հնարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)

23մ/վրկ

บ_้อบกเการ่า นบ่ะบนบ่ะซั นารกรกหบับชา นกนฺฐนฺรบกา นาคุรกหาบชาท รกหมนฺก

Նյութի անվանումը	գույն գեւ կոնցենտ	վելա- ոնամերձ որացիան /մ ³	Աղբյուրի համարը	Ներդրումը %	Արտադրամաս, տեղամաս
	առանց ֆոնի	ֆոնով			
Անօրգանական փոշի (SiO ₂ -20-70%)	0.0319	1	3	50	բետոնախառնիչ
Անօրգանական փոշի (SiO ₂ -20-70%)	0.00797		3	67	բետոնախառնիչ
Ցեմենտի փոշի	0.01		3	67.9	բետոնախառնիչ

Արմմոնիտորինգի տվյալների համաձայն Երևանի մթնոլորտային օդում 2018թ. հունիսին

ընդհանուր փոշու կոնցենտրացիան կազմել է 0.065 մգ/մ³

ֆոնով հաշվարկելու դեպքում`

 $0.0319+0.00797+0.01+0.065 = 0.11487 \text{ úg/ú}^3 : 0.5 = 0.2297 \text{ UG4}$

ՄԹՆՈԼՈՐՏՈՒՄ ՎՆԱՍԱԿԱՐ ՆՅՈՒԹԵՐԻ ԱՐՏԱՆԵՏՈՒՄՆԵՐԻ ՑՐՄԱՆ ՀԱՇՎԱՐԿԻ ԱՐԴՅՈՒՆՔՆԵՐԸ

Մթնոլորտում վնասակար նյութերի արտանետումների ցրման հաշվարկի արդյունքները ներկա վիձակի համար ցույց են տալիս, որ սահմանային թույլատրելի խտության գերազանցում չի դիտվում։ Ձեռնարկության արտանետումները չեն գերազանցում դրանց համար սահմանված չափանիշները, այդ պատձառով արտանետումների քանակն իջեցնող միջոցառումների պլան չի նախատեսվում :

Հաշվարկների վերլուծության հիման վրա առաջարկվում է բոլոր նյութերի համար նախատեսված արտանետումները ընդունել որպես որպես ՍԹԱ, քանի որ եթե աղտոտող նյութերի արտանետումները ցրվելու արդյունքում գետնամերձ շերտում՝ արտանետվող կազմակերպության տարածքի եզրին և (կամ) ամենամոտ բնակելի տարածքներում, առաջացնում են այնպիսի խտություններ, որոնք տվյալ տարածքի աղտոտվածության ֆոնային խտության հետ համատեղ չեն գերազանցում սահմանային թույլատրելի խտությունները ապա ՍԹԱ նորմատիվները համարվում են ընդունելի և հանդիսանում են արտանետումների սահմանային չափաքանակներ (արտանետման թույլտվություններ)։

Ձեռնարկության արտանետումները չեն գերազանցում այդ վնասակար նյութերի համար սահմանված չափանիշները, այդ պատՃառով արտանետումների քանակն իջեցնող միջոցառումների պյան չի նախատեսվում և աղյուսակ 5-ր չի լրացվում:

/ นารนบธรบนบ ตกเรเรนกเตรกเบบธา/

ԱՂՅՈՒՍԱԿ6

Աղտոտող նյութը		անուր անետումը	Աղտոտո ղ նյութը	Ընդիանուր արտանետումը		
	գ/ վ	տ/տարի		գ/վ	տ/ տարի	
Անօրգանական փոշի (SiO₂<20%)	0.255	3.0726				
Անօրգանական փոշի (SiO ₂ -20-70%)	2.235	15.1902				
Ցեմենտի փոշի	0.16	0.9792				

Расчёт загрязнения атмосферы с использованием унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр»

Промплощадка N1

Расчёт загрязнения атмосферы выполнен в соответствии с ОНД-86 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий», с использованием унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр».

1.1 Исходные данные для проведения расчета загрязнения атмосферы

порог целесообразности по вкладу источников выброса: **0,05**; площадь города (для экстраполяции фона), км²: **20000**; расчетный год **2020**.

Метеорологические характеристики и коэффициенты:

коэффициент, зависящий от температурной стратификации атмосферы: 200;

средняя температура наружного воздуха, °C: **25,9**; коэффициент рельефа: **1**.

Параметры перебора ветров:

направление, метео °: 0 - **360** (шаг 1); скорость, м/с: **0,5 - 23** (шаг 0,1).

Основная система координат - правая с ориентацией оси ОУ на Север.

При проведении расчета в охранной зоне учтен коэффициент 0,8 к ПДК.

Количество загрязняющих веществ в расчете - 2 (в том числе твердых - 2; жидких и газообразных - нет), групп суммации - нет. Перечень и коды веществ и групп суммации, участвующих в расчёте загрязнения атмосферы, с указанием класса опасности и предельно-допустимой концентрации (ПДК) либо ориентировочного безопасного уровня воздействия (ОБУВ), приведен в таблице 1.1.1.

Таблица № 1.1.1 - Перечень загрязняющих веществ и групп суммации

	Загрязняющее вещество	Класс	Предельно-допустимая концентрация, мг/м³			
код	наименование		максимально	средне-	ОБУВ	используется
код			-разовая	суточная	ОБУБ	в расчете
1	2	3	4	5	6	7
2908	Пыль неорганическая: SiO2 20-70%	3	0,3	0,1	-	0,3
2909	Пыль неорганическая: SiO2<20%	3	0,5	0,15	-	0,5

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.1.2.

Таблица № 1.1.2 - Параметры расчетных точек

Наименерация		Координаты		Tup =0
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-33,35	61,29	2	Точка на границе ОС33

Продолжение таблицы 1.1.2

Hausanapanna		Координаты		Тип точки
Наименование	X	Υ	высота, м	тип точки
1	2	3	4	5
2	8,59	38,87	2	Точка на границе ОС33
3	11,14	-12,93	2	Точка на границе ОС33
4	-28,41	-39,35	2	Точка на границе ОС33
5	-83,55	5,91	2	Точка на границе ОС33
6	-63,1	5,6	2	Точка в промзоне
7	-31,4	38	2	Точка в промзоне
8	-3,6	13,5	2	Точка в промзоне
9	-40,6	-16,3	2	Точка в промзоне
10	-100,1	79	2	Точка в жилой зоне
11	-47,2	123,3	2	Точка в жилой зоне
12	36,8	97,5	2	Точка в жилой зоне
13	130	65,7	2	Точка в жилой зоне
14	81,8	-37,4	2	Точка в жилой зоне
15	-90,9	-55,3	2	Точка в жилой зоне
16	-159	30	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.1.3.

Таблица № 1.1.3 - Параметры расчетных площадок

		Координаты ср	Ширина,	Высота,	Шаг	Шаг С33,		
Наименование	точі	ка 1	точ	' '	м	-		
	X ₁	Y ₁	X ₂	Y ₂	M	M	сетки, м	M
1	2	3	4	5	6	7	8	9
1	-200	40	200	40	320	2	40	-

Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам, приведена в таблице 1.1.4.

Таблица № 1.1.4 - Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам

Nº N3A	расчет	ние из	режим		ётном году	Рабочий график	Принадлежность к группе источников, работающих не одновременно
	е	фона	а ИЗА	начало	окончание		
1	2	3	4	5	6	7	8
Объект	г:	1. Объе	кт №1 Та	racq 1			
Площа	дка:	1. Плош	адка №1	1			
Цех:		1. Цех N	<u> 01</u>				
1	+	+	-	01 января	31 декабря	-	-
2	+	+	-	01 января	31 декабря	1	-
3	+	+	-	01 января	31 декабря		-
4	+	+	-	01 января	31 декабря	-	-
5	+	+	-	01 января	31 декабря	-	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.1.5.

Таблица № 1.1.5 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВО	C	Ко	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº N3A	Тип	Высо та, м	Диаме тр, м	скорость,	объем,	темп.,	X ₁	Υ ₁	шири	К рел	скор. ветра,	код	масса	К	конц-я,	до ма- ксиму-
VIJA		ia, m	1p, m	м/с	w ₃ /c	°C	X_2	Y ₂	на, м	рел	м/с	код	выброса, г/с	oc.	д.ПДК	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объек	т:		1. Объе	кт №1 Tar	acq 1		•						•			
Площа	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех І	Nº1												
1	4	5	20	3	942,478	20	-48,6	17,5	-	1	34,32	2908	0,15	3	0,093	157,99
							-28,6	22,5				2909	0,5	3	0,186	157,99
2	1	15	0,01	15	0,00118	20	-18,1	20,1	-	1	0,5	2908	0,05	3	0,162	42,75
3	1	4,5	2,5	10	49,087	20	-24,7	3,6	-	1	15,889	2908	0,075	3	0,129	96,75
												2909	0,075	3	0,077	96,75
4	1	4	1,5	12	21,206	20	-36	-7,7	-	1	12,87	2908	0,01	3	0,028	77,4
												2909	0,03	3	0,05	77,4
												2908	0,01	3	0,028	77,4
5	4	9	25	12	5890,49	20	-43,9	-5	-	1	95,333	2908	2	3	0,113	473,96
							-18,9	0								

1.2 Расчет загрязнения по веществу «2908. Пыль неорганическая: SiO2 20-70%»

Полное наименование вещества с кодом 2908 — Пыль неорганическая, содержащая 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.). Максимально разовая предельно допустимая концентрация составляет 0,3 мг/м³, класс опасности 3.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 5 (в том числе: организованных - 5, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 4; 11-20 M - 1; 21-29 M - HeT; 30-50 M - HeT; 51-100 M - HeT; более 100 M - HeT.

Суммарный выброс, учтенных в расчёте источников, составляет 2,295 грамм в секунду и 0 тонн в год.

Расчётных точек – 16, расчётных площадок - 1 (узлов расчётной сетки - 99).

Максимальная расчётная приземная концентрация (См), выраженная в долях ПДК населенных мест, по расчётной площадке № 1 составляет:

- на границе С33 **0,17**, которая достигается в точке № 2 X=8,59 Y=38,87, при направлении ветра 223°, скорости ветра 15,5 м/с, в том числе: вклад источников предприятия 0,17;
- в жилой зоне **0,196**, которая достигается в точке № *11* X=-*47,2* Y=*123,3*, при направлении ветра *172*°, скорости ветра *21,9* м/с, в том числе: вклад источников предприятия *0,196*.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.2.2.

Таблица № 1.2.2 - Параметры расчетных точек

Наименерация		Координаты		T
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-33,35	61,29	2	Точка на границе ОС33
2	8,59	38,87	2	Точка на границе ОС33
3	11,14	-12,93	2	Точка на границе ОС33
4	-28,41	-39,35	2	Точка на границе ОС33
5	-83,55	5,91	2	Точка на границе ОС33
6	-63,1	5,6	2	Точка в промзоне
7	-31,4	38	2	Точка в промзоне
8	-3,6	13,5	2	Точка в промзоне
9	-40,6	-16,3	2	Точка в промзоне
10	-100,1	79	2	Точка в жилой зоне
11	-47,2	123,3	2	Точка в жилой зоне
12	36,8	97,5	2	Точка в жилой зоне
13	130	65,7	2	Точка в жилой зоне
14	81,8	-37,4	2	Точка в жилой зоне
15	-90,9	-55,3	2	Точка в жилой зоне
16	-159	30	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.2.3.

Таблица № 1.2.3 - Параметры расчетных площадок

		Координаты ср	Ширина,	D. 100=0	Illos	III.a. C22		
Наименование	точі	ка 1	точ	м	Высота,	Шаг сетки, м	Шаг С33,	
	X_1	Υ ₁	X ₂	Y ₂	M	M	сетки, м	M
1	2	3	4	5	6	7	8	9
1	-200	40	200	40	320	2	40	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.2.4.

Таблица № 1.2.4 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВ	C	Koo	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	Тип	Высо	Диаме	скорость,	объем,	темп.,	X ₁	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	_	та, м	тр, м	м/с	m³/c	°C	X_2	Y ₂	на, м	рел	ветра, м/с	код	выброса, г/с	oc.	д.ПДК	ксиму- ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объен	⟨Т:		1. Объе	ект №1 Tar	acq 1											
Площ	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех І	N º 1												
1	4	5	20	3	942,478	20	-48,6	17,5	-	1	34,32	2908	0,15	3	0,093	157,99
							-28,6	22,5								
2	1	15	0,01	15	0,00118	20	-18,1	20,1	-	1	0,5	2908	0,05	3	0,162	42,75
3	1	4,5	2,5	10	49,087	20	-24,7	3,6	-	1	15,889	2908	0,075	3	0,129	96,75
4	1	4	1,5	12	21,206	20	-36	-7,7	-	1	12,87	2908	0,01	3	0,028	77,4
												2908	0,01	3	0,028	77,4
5	4	9	25	12	5890,49	20	-43,9	-5	-	1	95,333	2908	2	3	0,113	473,96
							-18,9	0								

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.2.5.

Таблица № 1.2.5 - Значения максимальных концентраций в расчетных точках

		Ко	ординаты			етная нтрация	- Фон,	Вклад	Ветер: направлен		Вклад	ИЗА
Наименование	Тип	Х	Υ	высот а, м	д.ПДК	Mr/M³	д.ПДК	предпр иятия, д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площадка 1(СК Основная СК)												
1	OC33	-33,35	61,29	2	0,164	0,049	-	0,164	160 个 0,5	1.1.2	0,16	98,4
2	OC33	8,59	38,87	2	0,17	0,051	-	0,17	223 7 15,5	1.1.3	0,116	67,7
3	OC33	11,14	-12,93	2	0,162	0,049	-	0,162	318 ≽ 0,5	1.1.2	0,16	99,2
4	OC33	-28,41	-39,35	2	0,15	0,045	-	0,15	10 ↓ 0,6	1.1.2	0,146	97,8
5	OC33	-83,55	5,91	2	0,143	0,043	-	0,143	78 ← 0,6	1.1.2	0,14	98
6	Пром.	-63,1	5,6	2	0,16	0,048	-	0,16	72 ← 0,5	1.1.2	0,158	99,1
7	Пром.	-31,4	38	2	0,117	0,035	-	0,117	144 √ 0,5	1.1.2	0,117	99,4
8	Пром.	-3,6	13,5	2	0,122	0,0366	-	0,122	243 🗷 15,6	1.1.3	0,093	76,3
9	Пром.	-40,6	-16,3	2	0,165	0,05	-	0,165	32 ∠ 0,5	1.1.2	0,162	98
10	Жил.	-100,1	79	2	0,19	0,057	-	0,19	136 ┖ 22,2	1.1.3	0,118	61,6
11	Жил.	-47,2	123,3	2	0,196	0,059	-	0,196	172 ↑ 21,9	1.1.3	0,105	53,5
12	Жил.	36,8	97,5	2	0,184	0,055	-	0,184	214 🗷 17,7	1.1.3	0,123	66,9
13	Жил.	130	65,7	2	0,182	0,055	-	0,182	250 → 23	1.1.3	0,097	53,5
14	Жил.	81,8	-37,4	2	0,194	0,058	-	0,194	292 → 23	1.1.3	0,115	59,4
15	Жил.	-90,9	-55,3	2	0,19	0,057	-	0,19	48 ∠ 15,6	1.1.3	0,128	68
16	Жил.	-159	30	2	0,18	0,054	-	0,18	100 ← 23	1.1.3	0,109	60,5

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.2.6.

Таблица № 1.2.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

	Координаты Расчетная концентрация		концентрация		Вклад	Be	тер	
Nº	Х	Υ	д.ПДК	ML/W3	Фон, д.ПДК	предприятия,	направл., °	скорость, м/с
						д.ПДК		
1	-200	-120	0,176	0,053	-	7 0,176	8 53 ⊭	9 23
2	-200 -160	-120 -120	0,176	0,053	<u> </u>	0,176	53 ⊵ 46 ⊵	23
3	-120	-120	0,19	0,057	_	0,19	36 ∠	21,7
4	-80	-120	0,198	0,059	-	0,198	22 ↓	21,2
5	-40	-120	0,203	0,061	-	0,203	4 ↓	23
6	0	-120	0,207	0,062	-	0,207	346 ↓	23
7	40	-120	0,21	0,063	-	0,21	331 ⅓	22,9
8	80	-120	0,202	0,061	-	0,2	319 🛚	22,6
9	120	-120	0,192	0,058	-	0,192	310 🗵	23
10 11	160 200	-120 -120	0,18 0,167	0,054	-	0,18 0,167	304 ⅓ 299 ⅓	23 23
12	-200	-80	0,107	0,054	-	0,107	63 🗹	23
13	-160	-80	0,182	0,055	_	0,182	57 ∠	21,9
14	-120	-80	0,187	0,056	-	0,187	48 ∠	18,3
15	-80	-80	0,194	0,058	-	0,194	32 ∠	16,8
16	-40	-80	0,18	0,054	-	0,18	8 ↓	17,7
17	0	-80	0,186	0,056	-	0,186	341 ↓	22,2
18	40	-80	0,203	0,061	-	0,203	321 🛚	23
19	80	-80	0,204	0,061	-	0,204	308 🗸	23
20	120 160	-80 -80	0,197	0,059	-	0,197	300 🗵	23
21	200	-80 -80	0,185 0,172	0,055	-	0,185 0,172	295 ⅓ 291 →	23 23
23	-200	-40	0,172	0,054	_	0,18	75 ←	23
24	-160	-40	0,177	0,053	-	0,177	72 ←	19,4
25	-120	-40	0,173	0,052	-	0,173	66 ∠	21
26	-80	-40	0,18	0,054	-	0,18	52 ∠	15,4
27	-40	-40	0,147	0,044	-	0,147	20 ↓	0,6
28	0	-40	0,15	0,045	-	0,15	330 万	21
29	40	-40	0,178	0,053	-	0,178	304 🗵	21,8
30	80	-40	0,195	0,059	-	0,195	293 🛚	22,5
31 32	120 160	-40 -40	0,195 0,186	0,058	-	0,195 0,186	287 → 284 →	22,8 23
33	200	-40	0,174	0,052	-	0,174	282 →	23
34	-200	0	0,18	0,054	-	0,18	88 ←	23
35	-160	0	0,174	0,052	-	0,174	88 ←	20,6
36	-120	0	0,16	0,048	-	0,16	89 ←	15,9
37	-80	0	0,144	0,043	-	0,144	72 ←	0,6
38	-40	0	0,148	0,0445	-	0,148	48 ∠	0,5
39	0	0	0,14	0,042	-	0,14	318 🗓	0,5
40 41	40 80	0	0,15 0,18	0,045	-	0,15 0,18	272 → 272 →	15,9 19,6
42	120	0	0,18	0,057	-	0,18	272 →	22,9
43	160	0	0,184	0,055	-	0,184	272 →	23
44	200	0	0,174	0,052	-	0,174	272 →	23
45	-200	40	0,186	0,056	-	0,186	101 ←	23
46	-160	40	0,183	0,055	-	0,183	104 ←	23
47	-120	40	0,17	0,051	-	0,17	111 ←	19
48	-80	40	0,146	0,044	-	0,146	123 5	17,8
49 50	-40 0	40 40	0,148 0,164	0,0445	-	0,148 0,164	132 ∇ 215 7	0,5 15,5
51	40	40	0,164	0,049	-	0,164	240 7	15,7
52	80	40	0,18	0,054	-	0,18	251 →	18,2
53	120	40	0,184	0,055	-	0,184	257 →	22,8
54	160	40	0,18	0,054	-	0,18	260 →	23
55	200	40	0,17	0,051	-	0,17	262 →	23
56	-200	80	0,19	0,057	-	0,19	113 人	23
57	-160	80	0,195	0,059	-	0,195	119 万	23
58 59	-120 -80	80 80	0,195 0,183	0,059	-	0,195 0,183	129 ↖ 145 ↖	23 21,3
60	-80 -40	80	0,183	0,055	-	0,183	171 ↑	17,7
61	0	80	0,100	0,053	-	0,100	199 ↑	15,8
62	40	80	0,185	0,055	-	0,185	221 7	16,9
63	80	80	0,18	0,054	-	0,18	235 🗷	20,3
			-					

Продолжение таблицы 1.2.6

	Коорд	инаты	Расчетная	концентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	WL/W3	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
64	120	80	0,182	0,055	-	0,182	244 🗷	23
65	160	80	0,177	0,053	-	0,177	249 →	22,6
66	200	80	0,167	0,05	-	0,167	253 →	23
67	-200	120	0,187	0,056	-	0,187	124 ↖	23
68	-160	120	0,2	0,059	-	0,2	131 ↖	23
69	-120	120	0,2	0,06	-	0,2	142 ↖	21,3
70	-80	120	0,2	0,061	-	0,2	156 ↖	23
71	-40	120	0,194	0,058	-	0,194	175 个	22,7
72	0	120	0,188	0,056	-	0,188	194 个	20,2
73	40	120	0,185	0,055	-	0,185	211 🗷	20,6
74	80	120	0,183	0,055	-	0,183	224 🗷	23
75	120	120	0,18	0,054	-	0,18	233 🗷	21,6
76	160	120	0,172	0,052	-	0,172	239 🗷	23
77	200	120	0,163	0,049	-	0,163	244 🗷	23
78	-200	160	0,18	0,054	-	0,18	132 ↖	23
79	-160	160	0,19	0,057	-	0,19	140 ↖	22,7
80	-120	160	0,2	0,06	-	0,2	150 ┖	23
81	-80	160	0,2	0,061	-	0,2	162 个	23
82	-40	160	0,2	0,06	-	0,2	177 个	23
83	0	160	0,193	0,058	-	0,193	191 个	23
84	40	160	0,19	0,056	-	0,19	205 🗷	23
85	80	160	0,182	0,055	-	0,182	216 🗷	23
86	120	160	0,175	0,052	-	0,175	225 🗷	23
87	160	160	0,165	0,05	-	0,165	231 🗷	22,1
88	200	160	0,157	0,047	-	0,157	237 🗷	23
89	-200	200	0,17	0,051	-	0,17	139 ↖	22,6
90	-160	200	0,18	0,054	-	0,18	146 ↖	23
91	-120	200	0,188	0,056	-	0,188	155 ↖	23
92	-80	200	0,19	0,057	-	0,19	166 个	23
93	-40	200	0,19	0,057	-	0,19	177 个	23
94	0	200	0,188	0,056	-	0,188	189 个	23
95	40	200	0,18	0,054	-	0,18	200 个	22,1
96	80	200	0,176	0,053	-	0,176	210 🗷	23
97	120	200	0,168	0,05	-	0,168	218 🗷	23
98	160	200	0,16	0,048	-	0,16	225 🗷	23
99	200	200	0,15	0,045	-	0,15	230 🗷	22,6

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:2500** на рисунке 1.2.1.

Картограмма значений наибольших концен 0,1 – 0,2

0,2 -0,3

1.3 Расчет загрязнения по веществу «2909. Пыль неорганическая: SiO2<20%»

Полное наименование вещества с кодом 2909 — Пыль неорганическая, содержащая двуокись кремния менее 20% двуокиси кремния (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и др.). Максимально разовая предельно допустимая концентрация составляет 0,5 мг/м³, класс опасности 3.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 3 (в том числе: организованных - 3, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 3; 11-20 M - Het; 21-29 M - Het; 30-50 M - Het; 51-100 M - Het; более 100 M - Het.

Суммарный выброс, учтенных в расчёте источников, составляет 0,605 грамм в секунду и 0 тонн в год.

Расчётных точек – 16, расчётных площадок - 1 (узлов расчётной сетки - 99).

Максимальная расчётная приземная концентрация (См), выраженная в долях ПДК населенных мест, по расчётной площадке № 1 составляет:

- на границе СЗЗ **0,122**, которая достигается в точке № 3 X=*11,14* Y=*-12,93*, при направлении ветра *299*°, скорости ветра *23* м/с, в том числе: вклад источников предприятия *0,122*;
- в жилой зоне **0,207**, которая достигается в точке № *14* X=*81,8* Y=*-37,4*, при направлении ветра *293*°, скорости ветра *23* м/с, в том числе: вклад источников предприятия *0,207*.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.3.2.

Таблица № 1.3.2 - Параметры расчетных точек

Наименерание		Координаты		Тип точки
Наименование	X	Υ	высота, м	тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-33,35	61,29	2	Точка на границе ОСЗЗ
2	8,59	38,87	2	Точка на границе ОС33
3	11,14	-12,93	2	Точка на границе ОС33
4	-28,41	-39,35	2	Точка на границе ОСЗЗ
5	-83,55	5,91	2	Точка на границе ОСЗЗ
6	-63,1	5,6	2	Точка в промзоне
7	-31,4	38	2	Точка в промзоне
8	-3,6	13,5	2	Точка в промзоне
9	-40,6	-16,3	2	Точка в промзоне
10	-100,1	79	2	Точка в жилой зоне
11	-47,2	123,3	2	Точка в жилой зоне
12	36,8	97,5	2	Точка в жилой зоне
13	130	65,7	2	Точка в жилой зоне
14	81,8	-37,4	2	Точка в жилой зоне
15	-90,9	-55,3	2	Точка в жилой зоне
16	-159	30	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.3.3.

Таблица № 1.3.3 - Параметры расчетных площадок

		Координаты ср	единной линии		Illiania	D. 100=0	Illos	IIIaa C22
Наименование	точі	ка 1	точі	ка 2	Ширина,	,		Шаг СЗЗ,
	X_1	Υ ₁	X ₂	Y ₂	M	М	сетки, м	M
1	2	3	4	5	6	7	8	9
1	-200	40	200	40	320	2	40	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.3.4.

Таблица № 1.3.4 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВ	С	Ko	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	Гип	Высо	Диаме	скорость,	объем,	темп	X ₁	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	F	та, м	тр, м	м/с	M³/c	°C	X ₂	Y_2	на, м	рел	ветра,	код	выброса, г/с	oc.	д.ПДК	ксиму-
				W/C	W /C	C	Λ ₂	12	na, m		m/c		выороса, т/с	OC.	д.пдп	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объен	т:		1. Объ	ект №1 Tar	acq 1											
Площ	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех	N º1												
1	4	5	20	3	942,478	20	-48,6	17,5	-	1	34,32	2909	0,5	3	0,186	157,99
							-28,6	22,5								
3	1	4,5	2,5	10	49,087	20	-24,7	3,6	-	1	15,889	2909	0,075	3	0,077	96,75
4	4	4	1,5	12	21,206	20	-36	-7,7		1	12,87	2909	0.00	3	0,05	77,4

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.3.5.

Таблица № 1.3.5 - Значения максимальных концентраций в расчетных точках

		Ко	ординаты			етная нтрация	Фон,	Вклад	Ветер: направлен		Вклад	ИЗА
Наименование	Тип	Х	Υ	высот а, м	д.ПДК	Mr/M³	д.ПДК	предпр иятия, д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площад	дка 1(СК	Основная СК)										
1	OC33	-33,35	61,29	2	0,107	0,054	-	0,107	178 个 23	1.1.1	0,043	40,3
										1.1.3	0,033	31,2
2	OC33	8,59	38,87	2	0,118	0,059	-	0,118	224 🗷	1.1.3	0,069	58,6
									15,2			
3	OC33	11,14	-12,93	2	0,122	0,061	-	0,122	299 🛭 23	1.1.1	0,077	63,6
4	OC33	-28,41	-39,35	2	0,111	0,056	-	0,11	348 ↓ 23	1.1.1	0,077	69,3
5	OC33	-83,55	5,91	2	0,11	0,055	-	0,11	73 ← 23	1.1.1	0,11	99,8
6	Пром.	-63,1	5,6	2	0,084	0,042	-	0,084	59 ∠ 23	1.1.1	0,084	100
7	Пром.	-31,4	38	2	0,07	0,035	-	0,07	170 ↑ 16,4	1.1.3	0,063	89,4
8	Пром.	-3,6	13,5	2	0,083	0,041	-	0,083	281 → 23	1.1.1	0,083	100
9	Пром.	-40,6	-16,3	2	0,069	0,034	-	0,069	37 ∠ 15,4	1.1.3	0,057	83,7
10	Жил.	-100,1	79	2	0,195	0,097	-	0,195	135 √ 23	1.1.1	0,11	57,1
11	Жил.	-47,2	123,3	2	0,205	0,103	-	0,205	173 ↑ 23	1.1.1	0,114	55,7
12	Жил.	36,8	97,5	2	0,166	0,083	-	0,166	221 7 23	1.1.1	0,118	71,1
13	Жил.	130	65,7	2	0,197	0,098	-	0,197	253 → 23	1.1.1	0,138	70,4
14	Жил.	81,8	-37,4	2	0,207	0,103	-	0,207	293 🛭 23	1.1.1	0,13	62,4
15	Жил.	-90,9	-55,3	2	0,132	0,066	-	0,132	48 ∠ 15,8	1.1.3	0,077	58,3
16	Жил.	-159	30	2	0,192	0,096	-	0,192	97 ← 23	1.1.1	0,133	69,2

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.3.6.

Таблица № 1.3.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

	Коорд	инаты	Расчетная	концентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	MΓ/M³	Фон, д.ПДК	предприятия,	направл., °	скорость, м/с
1	2	3	4	5	6	д.ПДК 7	8	9
1	-200	-120	0,193	0,096	-	0,193	51 ∠	23
2	-160	-120	0,198	0,099	-	0,198	43 ∠	23
3	-120	-120	0,2	0,101	-	0,2	33 ∠	23
4	-80	-120	0,207	0,104	-	0,207	19 ↓	23
5	-40	-120	0,22	0,109	-	0,22	2 ↓	23
6	0	-120	0,226	0,113	-	0,226	345 ↓	23
7	40	-120	0,23	0,114	-	0,23	331 🗓	23
8	80	-120	0,22	0,111	-	0,22	319 🛚	23
9	120 160	-120 -120	0,21	0,105 0,099	-	0,21	311 \(\sigma\)	23 23
11	200	-120	0,183	0,099		0,183	300 🗵	23
12	-200	-80	0,194	0,097	_	0,194	60 ∠	23
13	-160	-80	0,19	0,096	-	0,19	53 ∠	23
14	-120	-80	0,176	0,088	-	0,176	42 ∠	23
15	-80	-80	0,167	0,083	-	0,167	27 ∠	23
16	-40	-80	0,183	0,092	-	0,183	4 ↓	23
17	0	-80	0,2	0,1	-	0,2	340 ↓	23
18	40	-80	0,22	0,109	-	0,22	321 🛚	23
19	80	-80	0,222	0,111	-	0,22	309 🛭	23
20	120	-80	0,215	0,108	-	0,215	301 🗵	23
21	160	-80	0,203	0,101	-	0,203	295 🗵	23
22	200 -200	-80 -40	0,19 0,196	0,094	-	0,19 0,196	292 → 72 ←	23 23
24	-160	-40	0,190	0,091	_	0,130	66 Ľ	23
25	-120	-40	0,147	0,073	_	0,147	55 ∠	23
26	-80	-40	0,114	0,057	-	0,114	52 Ľ	20
27	-40	-40	0,11	0,055	-	0,11	5 ↓	23
28	0	-40	0,153	0,077	-	0,153	329 ⅓	23
29	40	-40	0,19	0,095	-	0,19	306 ⊿	23
30	80	-40	0,21	0,104	-	0,21	295 🛚	23
31	120	-40	0,21	0,106	-	0,21	289 →	23
32	160	-40	0,204	0,102	-	0,204	285 →	23
33 34	200 -200	-40 0	0,19	0,096	-	0,19	283 → 85 ←	23
35	-160	0	0,182	0,091	-	0,182	83 ←	23
36	-120	0	0,142	0,071	_	0,142	77 ←	23
37	-80	0	0,106	0,053	-	0,106	64 ∠	23
38	-40	0	0,056	0,028	-	0,056	77 ←	15,8
39	0	0	0,077	0,038	-	0,077	297 ⅓	23
40	40	0	0,135	0,067	-	0,135	283 →	23
41	80	0	0,183	0,091	-	0,183	277 →	23
42	120	0	0,203	0,102	-	0,203	275 →	23
43	160	0	0,2	0,101	-	0,2	274 →	23
44 45	200 -200	0 40	0,19 0,207	0,095 0,103	-	0,19 0,207	273 → 99 ←	23 23
45	-160	40	0,207	0,103	-	0,207	102 ←	23
47	-120	40	0,137	0,084	-	0,137	102 ←	23
48	-80	40	0,127	0,064	-	0,127	121 🔨	23
49	-40	40	0,082	0,041	-	0,082	157 ↖	20
50	0	40	0,112	0,056	-	0,112	215 🗷	16,2
51	40	40	0,132	0,066	-	0,132	255 →	23
52	80	40	0,17	0,085	-	0,17	258 →	22,8
53	120	40	0,197	0,098	-	0,197	260 →	23
54	160	40	0,197	0,099	-	0,197	262 →	23
55 56	200	40	0,19	0,094	-	0,19	264 → 112 ←	23 23
56	-200 -160	80 80	0,21 0,213	0,106 0,107	-	0,21 0,213	112 ←	23
58	-120	80	0,213	0,107		0,213	128 🔨	23
59	-80	80	0,18	0,091	-	0,18	146 🔨	23
60	-40	80	0,15	0,075	-	0,15	174 ↑	23
61	0	80	0,127	0,063	-	0,127	201 ↑	17,5
62	40	80	0,15	0,075	-	0,15	231 🗷	23
63	80	80	0,18	0,09	-	0,18	240 🗷	23

Продолжение таблицы 1.3.6

	Коорд	инаты	Расчетная	концентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	Mr/m³	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
64	120	80	0,196	0,098	-	0,196	247 🗷	23
65	160	80	0,194	0,097	-	0,194	251 →	23
66	200	80	0,185	0,093	-	0,185	254 →	23
67	-200	120	0,21	0,105	-	0,21	123 ↖	23
68	-160	120	0,22	0,11	-	0,22	130 ↖	23
69	-120	120	0,22	0,11	-	0,22	141 ↖	23
70	-80	120	0,214	0,107	-	0,214	157 ┖	23
71	-40	120	0,2	0,1	-	0,2	177 个	23
72	0	120	0,188	0,094	-	0,188	198 个	23
73	40	120	0,186	0,093	-	0,186	215 🗷	22,5
74	80	120	0,195	0,098	-	0,195	227 🗷	22,9
75	120	120	0,196	0,098	-	0,196	236 🗷	23
76	160	120	0,19	0,095	-	0,19	241 🗷	23
77	200	120	0,18	0,09	-	0,18	246 🗷	23
78	-200	160	0,203	0,102	-	0,203	132 ↖	23
79	-160	160	0,214	0,107	-	0,214	140 ↖	23
80	-120	160	0,223	0,111	-	0,223	150 ↖	23
81	-80	160	0,222	0,111	-	0,22	163 个	23
82	-40	160	0,217	0,109	-	0,217	178 个	23
83	0	160	0,21	0,105	-	0,21	193 ↑	23
84	40	160	0,206	0,103	-	0,206	207 🗷	23
85	80	160	0,2	0,1	-	0,2	218 🗷	23
86	120	160	0,193	0,097	-	0,193	227 🗷	23
87	160	160	0,183	0,092	-	0,183	233 🗷	22,5
88	200	160	0,174	0,087	-	0,174	238 🗷	23
89	-200	200	0,192	0,096	-	0,192	139 ↖	23
90	-160	200	0,203	0,102	-	0,203	146 ↖	23
91	-120	200	0,21	0,105	-	0,21	156 ┖	23
92	-80	200	0,214	0,107	-	0,214	166 个	23
93	-40	200	0,213	0,107	-	0,213	178 个	23
94	0	200	0,21	0,104	-	0,21	191 个	23
95	40	200	0,203	0,101	-	0,203	202 个	23
96	80	200	0,195	0,097	-	0,195	212 🗷	23
97	120	200	0,187	0,093	-	0,187	220 🗷	23
98	160	200	0,177	0,088	-	0,177	226 🗷	23
99	200	200	0,166	0,083	-	0,166	232 🗷	23

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:2500** на рисунке 1.3.1.

1.4 Мажорантный расчет загрязнения по всем веществам и группам суммаций

Расчёт загрязнения для мажоранты проводится по всем источникам загрязнения атмосферы и по всем веществам и группам суммации. При этом результат расчёта для каждой расчётной точки представляет собой наибольшее значение из максимальных расчётных концентраций, полученных для данной точки отдельно по каждому из веществ и групп суммации.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.4.1.

Таблица № 1.4.1 - Параметры расчетных точек

		Координаты		T
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-33,35	61,29	2	Точка на границе ОС33
2	8,59	38,87	2	Точка на границе ОС33
3	11,14	-12,93	2	Точка на границе ОС33
4	-28,41	-39,35	2	Точка на границе ОС33
5	-83,55	5,91	2	Точка на границе ОС33
6	-63,1	5,6	2	Точка в промзоне
7	-31,4	38	2	Точка в промзоне
8	-3,6	13,5	2	Точка в промзоне
9	-40,6	-16,3	2	Точка в промзоне
10	-100,1	79	2	Точка в жилой зоне
11	-47,2	123,3	2	Точка в жилой зоне
12	36,8	97,5	2	Точка в жилой зоне
13	130	65,7	2	Точка в жилой зоне
14	81,8	-37,4	2	Точка в жилой зоне
15	-90,9	-55,3	2	Точка в жилой зоне
16	-159	30	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.4.2.

Таблица № 1.4.2 - Параметры расчетных площадок

		Координаты ср	единной линии		Ширина,	Высота,	Шаг	Шаг С33,
Наименование	точка 1		точ	ка 2	ширина, М	м	сетки, м	
	X ₁	Y ₁	X ₂	Y ₂	IVI	IVI	CETKN, M	//\
1	2	3	4	5	6	7	8	9
1	-200	40	200	40	320	2	40	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.4.3.

Таблица № 1.4.3 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВО	3	Ко	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	F	Высо	Диаме	скорость.	объем,	темп	X ₁	Y ₁	идиш	К	скор.		масса	v	конц-я.	до ма-
ИЗА	F	та, м	тр, м	м/с	м ³ /с	°C	Y _a	V.	на, м	рел	ветра,	код		oc.	д.ПДК	ксиму-
				WITC	M /C	C	7.2	12	ma, m		м/с		выороса, т/с	oc.	A	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Объект: 1. Объект №1 Taracq 1 Площадка: 1. Площадка №1

Цех: 1. Цех №1

Продолжение таблицы 1.4.3

				Пар	аметры ГВО	С	Кос	рдинаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	Пи	Высо	Диаме	скорость,	объем,	темп.,	X_1	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	_	та, м	тр, м	м/с	M³/C	°C	X ₂	Y ₂	на, м	рел	ветра, м/с	код	выброса, г/с	oc.	д.ПДК	ксиму- ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	4	5	20	3	942,478	20	-48,6	17,5	-	1	34,32	2908	0,15	3	0,093	157,99
							-28,6	22,5				2909	0,5	3	0,186	157,99
2	1	15	0,01	15	0,00118	20	-18,1	20,1	-	1	0,5	2908	0,05	3	0,162	42,75
3	1	4,5	2,5	10	49,087	20	-24,7	3,6	-	1	15,889	2908	0,075	3	0,129	96,75
												2909	0,075	3	0,077	96,75
4	1	4	1,5	12	21,206	20	-36	-7,7	-	1	12,87	2908	0,01	3	0,028	77,4
												2909	0,03	3	0,05	77,4
												2908	0,01	3	0,028	77,4
5	4	9	25	12	5890,49	20	-43,9	-5	-	1	95,333	2908	2	3	0,113	473,96
							-18,9	0								

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.4.4.

Таблица № 1.4.4 - Значения максимальных концентраций в расчетных точках

		Ко	ординаты			етная нтрация	- Фон.	Вклад предпр	Ветер: направлен		Вклад	ИЗА
Наименование	Тип	X	Υ	высот а, м	д.ПДК	код ЗВ	д.ПДК	иятия, д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площа,	цка 1(СК	Основная СК)										
1	OC33	-33,35	61,29	2	0,164	2908	-	0,164	160 个 0,5	1.1.2	0,16	98,4
2	OC33	8,59	38,87	2	0,17	2908	-	0,17	223 7 15,5	1.1.3	0,116	67,7
3	OC33	11,14	-12,93	2	0,162	2908	-	0,162	318 ≥ 0,5	1.1.2	0,16	99,2
4	OC33	-28,41	-39,35	2	0,15	2908	-	0,15	10 ↓ 0,6	1.1.2	0,146	97,8
5	OC33	-83,55	5,91	2	0,143	2908	-	0,143	78 ← 0,6	1.1.2	0,14	98
6	Пром.	-63,1	5,6	2	0,16	2908	-	0,16	72 ← 0,5	1.1.2	0,158	99,1
7	Пром.	-31,4	38	2	0,117	2908	-	0,117	144 √ 0,5	1.1.2	0,117	99,4
8	Пром.	-3,6	13,5	2	0,122	2908	-	0,122	243 7 15,6	1.1.3	0,093	76,3
9	Пром.	-40,6	-16,3	2	0,165	2908	-	0,165	32 ∠ 0,5	1.1.2	0,162	98
10	Жил.	-100,1	79	2	0,195	2909	-	0,195	135 ₹ 23	1.1.1	0,11	57,1
11	Жил.	-47,2	123,3	2	0,205	2909	-	0,205	173 个 23	1.1.1	0,114	55,7
12	Жил.	36,8	97,5	2	0,184	2908	-	0,184	214 🗷 17,7	1.1.3	0,123	66,9
13	Жил.	130	65,7	2	0,197	2909	-	0,197	253 → 23	1.1.1	0,138	70,4
14	Жил.	81,8	-37,4	2	0,207	2909	-	0,207	293 🛭 23	1.1.1	0,13	62,4
15	Жил.	-90,9	-55,3	2	0,19	2908	-	0,19	48 ∠ 15,6	1.1.3	0,128	68
16	Жил.	-159	30	2	0,192	2909	-	0,192	97 ← 23	1.1.1	0,133	69,2

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.4.5.

Таблица № 1.4.5 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

	Коорд	инаты	Расчетная ко	онцентрация		Вклад	Be	тер
Nº	Х	Y	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
1	-200	-120	0,193	2909	-	0,193	51 ∠	23
2	-160	-120	0,198	2909	-	0,198	43 ∠	23
3	-120	-120	0,2	2909	-	0,2	33 ∠	23
4	-80	-120	0,207	2909	-	0,207	19 ↓	23
5	-40	-120	0,22	2909	-	0,22	2 ↓	23
6	0	-120	0,226	2909	-	0,226	345 ↓	23

	Коорд	цинаты	Расчетная	концентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
7	40	-120	0,23	2909	-	0,23	331 🛚	23
8	80	-120	0,22	2909	-	0,22	319 🛚	23
9	120	-120	0,21	2909	-	0,21	311 🛭	23
10	160	-120	0,2	2909	-	0,2	304 ⅓	23
11	200	-120	0,183	2909	-	0,183	300 🎵	23
12	-200	-80	0,194	2909	-	0,194	60 ∠	23
13	-160	-80	0,19	2909	-	0,19	53 ∠	23
14	-120	-80	0,187	2908	-	0,187	48 ∠	18,3
15	-80	-80	0,194	2908	-	0,194	32 ∠	16,8
16	-40	-80	0,183	2909	-	0,183	4 ↓	23
17	0	-80	0,2	2909	-	0,2	340 ↓	23
18	40	-80	0,22	2909	-	0,22	321 🗓	23
19 20	80 120	-80 -80	0,222 0,215	2909 2909	-	0,22 0,215	309 \(\sigma\)	23
21	160	-80	0,213	2909	+	0,213	295 🗓	23
22	200	-80	0,203	2909	-	0,203	292 →	23
23	-200	-40	0,196	2909	-	0,196	72 ←	23
24	-160	-40	0,130	2909	_	0,18	66 ∠	23
25	-120	-40	0,18	2908	-	0,173	66 ∠	21
26	-80	-40	0,18	2908	_	0,18	52 Ľ	15,4
27	-40	-40	0,147	2908	_	0,147	20 ↓	0,6
28	0	-40	0,153	2909	-	0,153	329 🛚	23
29	40	-40	0,19	2909	-	0,19	306 ⅓	23
30	80	-40	0,21	2909	-	0,21	295 🛚	23
31	120	-40	0,21	2909	-	0,21	289 →	23
32	160	-40	0,204	2909	-	0,204	285 →	23
33	200	-40	0,19	2909	-	0,19	283 →	23
34	-200	0	0,2	2909	-	0,2	85 ←	23
35	-160	0	0,182	2909	-	0,182	83 ←	23
36	-120	0	0,16	2908	-	0,16	89 ←	15,9
37	-80	0	0,144	2908	-	0,144	72 ←	0,6
38	-40	0	0,148	2908	-	0,148	48 ∠	0,5
39	0	0	0,14	2908	-	0,14	318 🗓	0,5
40	40	0	0,15	2908	-	0,15	272 →	15,9
41 42	80 120	0	0,183 0,203	2909 2909	-	0,183 0,203	277 → 275 →	23
43	160	0	0,203	2909	-	0,203	274 →	23
43	200	0	0,19	2909	-	0,19	273 →	23
45	-200	40	0,207	2909	_	0,207	99 ←	23
46	-160	40	0,197	2909	-	0,197	102 ←	23
47	-120	40	0,17	2908	_	0,17	111 ←	19
48	-80	40	0,146	2908	-	0,146	123 🕏	17,8
49	-40	40	0,148	2908	-	0,148	132 ↖	0,5
50	0	40	0,164	2908	-	0,164	215 🗷	15,5
51	40	40	0,18	2908	-	0,18	240 🗷	15,7
52	80	40	0,18	2908	-	0,18	251 →	18,2
53	120	40	0,197	2909	-	0,197	260 →	23
54	160	40	0,197	2909	-	0,197	262 →	23
55	200	40	0,19	2909	-	0,19	264 →	23
56	-200	80	0,21	2909	-	0,21	112 ←	23
57	-160	80	0,213	2909	-	0,213	118 🤨	23
58	-120	80	0,204	2909	-	0,204	128 🔨	23
59	-80	80	0,183	2908	-	0,183	145 🤨	21,3
60 61	-40 0	80 80	0,166	2908 2908	-	0,166 0,176	171 ↑	17,7 15,8
62	40	80	0,176 0,185	2908	-	0,176	199 ↑ 221 ⊅	16,9
63	80	80	0,185	2908	-	0,185	235 7	20,3
64	120	80	0,18	2909	-	0,18	247 7	20,3
65	160	80	0,190	2909	-	0,190	251 →	23
66	200	80	0,185	2909	-	0,185	254 →	23
67	-200	120	0,21	2909	-	0,21	123 🤊	23
68	-160	120	0,22	2909	-	0,22	130 ↖	23
69	-120	120	0,22	2909	-	0,22	141 🔨	23
70	-80	120	0,214	2909	-	0,214	157 ↖	23
71	-40	120	0,2	2909	-	0,2	177 个	23
			-,-		1	,	· · · · · · · · · · · · · · · · · · ·	

Продолжение таблицы 1.4.5

Nº	Координаты		Расчетная концентрация			Вклад	Ветер	
	X	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл.,°	скорость, м/с
1	2	3	4	5	6	7	8	9
72	0	120	0,188	2909	-	0,188	198 个	23
73	40	120	0,186	2909	-	0,186	215 🗷	22,5
74	80	120	0,195	2909	-	0,195	227 🗷	22,9
75	120	120	0,196	2909	-	0,196	236 🗷	23
76	160	120	0,19	2909	-	0,19	241 🗷	23
77	200	120	0,18	2909	-	0,18	246 🗷	23
78	-200	160	0,203	2909	-	0,203	132 ↖	23
79	-160	160	0,214	2909	-	0,214	140 ↖	23
80	-120	160	0,223	2909	-	0,223	150 ↖	23
81	-80	160	0,222	2909	-	0,22	163 个	23
82	-40	160	0,217	2909	-	0,217	178 个	23
83	0	160	0,21	2909	-	0,21	193 个	23
84	40	160	0,206	2909	-	0,206	207 🗷	23
85	80	160	0,2	2909	-	0,2	218 🗷	23
86	120	160	0,193	2909	-	0,193	227 🗷	23
87	160	160	0,183	2909	-	0,183	233 🗷	22,5
88	200	160	0,174	2909	-	0,174	238 🗷	23
89	-200	200	0,192	2909	-	0,192	139 ↖	23
90	-160	200	0,203	2909	-	0,203	146 ↖	23
91	-120	200	0,21	2909	-	0,21	156 ↖	23
92	-80	200	0,214	2909	-	0,214	166 个	23
93	-40	200	0,213	2909	-	0,213	178 个	23
94	0	200	0,21	2909	-	0,21	191 个	23
95	40	200	0,203	2909	-	0,203	202 个	23
96	80	200	0,195	2909	-	0,195	212 🗷	23
97	120	200	0,187	2909	-	0,187	220 🗷	23
98	160	200	0,177	2909	-	0,177	226 🗷	23
99	200	200	0,166	2909	-	0,166	232 🗷	23

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:2500** на рисунке 1.4.1.

Рисунок 1.4.1 - Вариант № 1; Расчетная площадка №1

Տավնլված N 3 Տայաստանի Տանրապնտության կառավարությանն առընթնը անշարժ գույքի կադասրի պնտական կոմիտնի նախագահի 2011թ. հոկտնմբնրի 20-ի N 284-Ն հրամանի ՀՈՂԱՄԱՍԻ ՀԱՏԱԿԱԳԻԾ Պատվիրատու՝ Անուն, ազգանուն, (անվանում) ք.Երևան Արշակունյաց պող. 127/21 Umpq _ **Surugli** 1:500 Մասշտաբ -• Ø վարձակալվող հողամաս 300.0քմ։ 10 2 10 20 Ա. Դաղայան (անուն, ազգանուն) 15.12.2011 ոման ամիս, ամսաթիվը) ակավորման վկայականի արը) (տրման 290.110.122243 (պետական գրանցման համարը ավարանական անձի «Դ<u>Ա-Դէ ԳՐՈՒՊ» ՍՊՐ</u> (գնավանանայի

2-րդ տարածք

Արշակունյաց 127/21

ՄԹՆՈԼՈՐՏ ԱՐՏԱՆԵՏՎՈՂ ՎՆԱՍԱԿԱՐ ՆՅՈͰԹԵՐԻ ԱՆՎԱՆԱՑԱՆԿԸ

Աղյուսակ 1

Նյութի անվանումը	ՍԹԿ առավելագույն միանվագ մգ/մ ³	Կտանգավո- րության դասը	Արտանետում- ները տ/տարի
Փոշի անօրգանական SiO ₂ -20-70%	0.3	3	2.152
Ցեմենտի փոշի	0.3	3	1.071

Գումարային հատկությամբ նյութերը բացակայում են

Կազմակերպության արտադրական գործընթացներում զարկային արտանետումներ չեն առաջանում, այդ պատձառով 2-րդ աղյուսակը չի լրացվում:

ԵԼԱԿԵՏԱՅԻՆ ՏՎՅԱԼՆԵՐ ՍԹԱ ՀԱՇՎԱՐԿԻ ՀԱՄԱՐ

Կատարվել է մթնոլորտն աղտոտող նյութերի աղբյուրների գույքագրում։ Ըստ գույքագրման արդյունքի ՍԹԱ հաշվարկի ելակետային տվյալները կազմվել և հաշվարկվել են ԳՕՍՏ 17.2.3.02-78 –ի պահանջներին համապատասխան և բերված են 3.3 աղյուսակում։

Հաշվարկները կատարվել են «Տարբեր արտադրությունների կողմից մթնոլորտն աղտոտող նյութերի արտանետումների հաշվարկի մեթոդիկան» ժողովածուի հիման վրա։

Նստեցման անչափելի գործակիցն ընդունվել է՝ գազանման վնասակար նյութերի և մանր դիսպերսության աերոզոլների համար, որոնց նստեցման կարգավորված արագությունը չի գերազանցում 3-5 սմ/վրկ՝ 1, խոշոր դիսպերսության փոշու համար մաքրման բացակայության դեպքում՝ 3, որսման դեպքում՝ 2 ։

ՍԹԱ ՀԱՇՎԱՐԿԻ ՀԱՄԱՐ ԱՆՀՐԱԺԵՇՏ ԱՂՏՈՏՈՂ ՆՅՈͰԹԵՐԻ ՊԱՐԱՄԵՏՐԵՐԸ

<u>աղյուսա</u>կ 3

Արտադրու- թյուն, արտադրամաս	Աղտոտող նյութեր աղբյուր		ոցման	Աշխատ տար	_	้ เมกุ	ոանետման բյուրների նվանումը	Աղբյուների քանակը		Աղբյուրի համարը	
	Անվանումը	Քան	անակը								
		ՆՎ	۲	ՆՎ	۷	ՆՎ	<	ՆՎ	<	ՆՎ	<
Բաց պահեստ	Իներտ նյութերի		1	170	0	անկս	սզմակերպ	1			1
Սիլոս	կուտակում Ցեմենտի մղում	2	2	170	1700 խ		խողովակ				2
Բետոնի շաղախի	Բետոնախառնիչ		1	170	0	խողովակ		1		3	

<u>3-րդ աղյուսակի շարունակությ</u>ունը

Աղբյուր կարգա			շյուրի ությունը, մ	Տրամազ	դիծը, մ	Գազաօդային խառնուրդի պարամետրերը արտանետման աղբյուրի ելքում						
		•				արագությունը մ/վրկ		ծավալը մ³/վրկ		ջերմւ	սստիձանը	
ՆՎ	<	ՆՎ	<	ՆՎ	<	ՆՎ	4	ՆՎ	4	ՆՎ	4	
11	12	13	14	15	16	17	18	19	20	21		
1		5		15		3		530.14		20		
2		15		0.01		2*15		0.0024		20		
3		4.5		2.5		10		49.087		20		

3-րդ աղյուսակի շարունակությունը

Աղբյու	ւրի	Կոոլ	ոդինատն <mark></mark>	երը քա	րտեզու	ւմ, մ	Գազերը մւ	աքրող սարքերի	Մաքրվող մ	նյութերը	Մաքրման միջ	շին շահագործման	
կարգալ	թիվը						անվանում	<u>n</u>			աստիՃանը		
		աղլ աղբյո կենւ գծայ	ոային բյուրի, ւր. խմբի տրոնի, ին աղբ. ւ ծայրի		ին աղբ ∙րդ ծայլ				Ապահովվածութ յան գործակիցը %		Մաքրման առ	ավելագույն չափը, %	
ՆՎ	<	X ₁	Y_1	X ₂	Y	2	ՆՎ	۷ .	ՆՎ	۷	ՆՎ	4	
11	12	23	24	25	26	27	28	29	30	31		32	
1		4	4	19	12								
2		20	10										
3		10	8										

3-րդ աղյուսակի շարունակությունը

Աղբյուրի		Նյութի անվանումը		Աղտ		ԱԹԱ հանելու տարին			
կարգաթ	ովը			ՆՎ					
ՆՎ	<		գ/վ մգ/մ³ տ/տարի			գ/վ	մգ/մ ³	տ/տարի	
11	12	33	34	35	36	37	38	39	40
1		Անօրգան. փոշի(SiO ₂ -20-70%)	0.20	0.38	1.224	0.20	0.38	1.234	2018
2		Ցեմենտի փոշի	0.10	42441.3	0.612	0.10	42441.3	0.612	2018
3		Անօրգան. փոշի(SiO ₂ -20-70%) Ցեմենտի փոշի	0.15 0.075	3.06 1.53	0.918 0.459	0.15 0.075	3.06 1.53	0.918 0.459	2018

ՄԹՆՈԼՈՐՏԻ ԱՄԵՆԱՄԵԾ ԱՂՏՈՏՈͰՄՆԵՐ ԱՌԱՁԱՑՆՈՂ ԱՂԲՅՈͰՐՆԵՐԻ

3N+3U4C

Նյութի անվանումը	Առաւ գույն գես կոնցենտ	ը ընամերձ	Աղբյուրի համարը	Ներդրումը %	Արտադրամաս, տեղամաս
	մգ առանց ֆոնի				
Անօրգանական փոշի (SiO ₂ -20-70%)	0.01396	-	3	77	Բետոնախառնիչ
Ցեմենտի փոշի	0.009555		3	56.35	բետոնախառնիչ

Արմմոնիտորինգի տվյալների համաձայն Երևանի մթնոլորտային օդում 2018թ. հունիսին

ընդհանուր փոշու կոնցենտրացիան կազմել է 0.065 մգ/մ³

ֆոնով հաշվարկելու դեպքում`

0.01396+0.009555+0.065 = 0.088515น์q/น³ : 0.5=0.177 ป*ต*ิ

ՄԹՆՈԼՈՐՏՈͰՄ ՎՆԱՍԱԿԱՐ ՆՅՈͰԹԵՐԻ ԱՐՏԱՆԵՏՈͰՄՆԵՐԻ ՑՐՄԱՆ ՀԱՇՎԱՐԿԻ ԱՐԴՅՈͰՆՔՆԵՐԸ

Մթնոլորտում վնասակար նյութերի արտանետումների ցրման հաշվարկի արդյունքները ներկա վիձակի համար ցույց են տալիս, որ սահմանային թույլատրելի խտության գերազանցում չի դիտվում։ Ձեռնարկության արտանետումները չեն գերազանցում դրանց համար սահմանված չափանիշները, այդ պատձառով արտանետումների քանակն իջեցնող միջոցառումների պյան չի նախատեսվում :

Հաշվարկների վերլուծության հիման վրա առաջարկվում է բոլոր նյութերի համար նախատեսված արտանետումները ընդունել որպես որպես ՍԹԱ, քանի որ եթե աղտոտող նյութերի արտանետումները ցրվելու արդյունքում գետնամերձ շերտում՝ արտանետվող կազմակերպության տարածքի եզրին և (կամ) ամենամոտ բնակելի տարածքներում, առաջացնում են այնպիսի խտություններ, որոնք տվյալ տարածքի աղտոտվածության ֆոնային խտության հետ համատեղ չեն գերազանցում սահմանային թույլատրելի խտությունները ապա ՍԹԱ նորմատիվները համարվում են ընդունելի և հանդիսանում են արտանետումների սահմանային չափաքանակներ (արտանետման թույլտվություններ)։

Ձեռնարկության արտանետումները չեն գերազանցում այդ վնասակար նյութերի համար սահմանված չափանիշները, այդ պատՃառով արտանետումների քանակն իջեցնող միջոցառումների պլան չի նախատեսվում և աղյուսակ 5-ը չի լրացվում։

ԱՆՇԱՐԺ ԱՂԲՅՈԻՐՆԵՐԻՑ ԱՂՏՈՏՈՂ ՆՅՈԻԹԵՐ ՄԹՆՈԼՈՐՏ ԱՐՏԱՆԵՏԵԼՈԻ «ԽԱՈՒՄ» ՍՊԸ 2-րդ տարածքի ՉԱՓԱՔԱՆԱԿՆԵՐ / ԱՐՏԱՆԵՏՄԱՆ ԹՈԻՅԼՏՎՈԻԹՅՈԻՆՆԵՐ/

นาร Γ เบนน6

Աղտոտող նյութը		անուր անետումը	Աղտոտ ող նյութը	Ընդհանուր արտանետումը		
	գ/ վրկ	տ/տարի		գ / վրկ	տ/ տարի	
Անօրգանական փոշի (SiO ₂ -20-70%)	0.35	2.142				
Ցեմենտի փոշի	0.175	1.071				

Расчёт загрязнения атмосферы с использованием унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр»

Промплощадка N2

Расчёт загрязнения атмосферы выполнен в соответствии с ОНД-86 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий», с использованием унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр».

1.1 Исходные данные для проведения расчета загрязнения атмосферы

порог целесообразности по вкладу источников выброса: **0,05**; площадь города (для экстраполяции фона), км²: **20000**; расчетный год **2020**.

Метеорологические характеристики и коэффициенты:

коэффициент, зависящий от температурной стратификации атмосферы: 200;

средняя температура наружного воздуха, °C: **25,9**; коэффициент рельефа: **1**.

Параметры перебора ветров:

направление, метео °: 0 - 360 (шаг 1); скорость, м/с: 0,5 - 23 (шаг 0,1).

Основная система координат - правая с ориентацией оси ОҮ на Север.

При проведении расчета в охранной зоне учтен коэффициент 0,8 к ПДК.

Количество загрязняющих веществ в расчете - 1 (в том числе твердых - 1; жидких и газообразных - нет), групп суммации - нет. Перечень и коды веществ и групп суммации, участвующих в расчёте загрязнения атмосферы, с указанием класса опасности и предельно-допустимой концентрации (ПДК) либо ориентировочного безопасного уровня воздействия (ОБУВ), приведен в таблице 1.1.1.

Таблица № 1.1.1 - Перечень загрязняющих веществ и групп суммации

	Загрязняющее вещество	Класс	Предел	Предельно-допустимая концентрация, мг/м³				
иол		опасност	максимально	средне-	ОБУВ	используется		
код	наименование	И	-разовая	суточная	ОБУБ	в расчете		
1	2	3	4	5	6	7		
2908	Пыль неорганическая: SiO2 20-70%	3	0,3	0,1	-	0,3		

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.1.2.

Таблица № 1.1.2 - Параметры расчетных точек

Hausauanauua		Координаты	Тип точки	
Наименование	X	Х У высота		Типточки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-23,57	61,07	2	Точка на границе ОС33
2	28,26	30,01	2	Точка на границе ОС33
3	13,58	-28,61	2	Точка на границе ОС33
4	-50,78	-28,61	2	Точка на границе ОСЗЗ

Продолжение таблицы 1.1.2

Наименование		Координаты		Тип точки
паименование	X	Υ	высота, м	ТИПТОЧКИ
1	2	3	4	5
5	-63,33	34,51	2	Точка на границе ОС33
6	-53,8	41,2	2	Точка в промзоне
7	13,8	43,5	2	Точка в промзоне
8	14,78	-6,02	2	Точка в промзоне
9	16,1	-72,2	2	Точка в промзоне
10	-51,09	-69,95	2	Точка в промзоне
11	-52,4	-16,2	2	Точка в промзоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.1.3.

Таблица № 1.1.3 - Параметры расчетных площадок

		Координаты ср	единной линии		Illianiana	D. 100=0	Шаг	Шаг С33,
Наименование	точ	ка 1	точка 2		Ширина,	· ·	'	l '
	X ₁	Y ₁	X ₂	Y ₂	М	М	сетки, м	М
1	2	3	4	5	6	7	8	9
1	-200	-13,24	181,6	-13,24	293,516	2	40	-

Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам, приведена в таблице 1.1.4.

Таблица № 1.1.4 - Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам

Nº N3A	Учет в расчет е	Исключе ние из фона	№ режим а ИЗА	Срок действ ИЗА в расч начало	вия режима ётном году окончание	Рабочий график	Принадлежность к группе источников, работающих не одновременно
1	2	3	4	5	6	7	8
Объект: 1. Объект №1 Промплощадка 2							
Площадка: 1. Площадка №1							
Цех:		1. Цех N	<u>1</u> 21				
1	+	+	-	01 января	31 декабря	-	-
2	+	+	-	01 января	31 декабря	-	-
3	+	+	-	01 января	31 декабря	-	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.1.5.

Таблица № 1.1.5 - Параметры источников загрязнения атмосферы

				Параметры ГВС Координаты						Опас.	Загря:	зняющее веще	ство	Макс.	Расст.	
Nº	ТиП	Высо	Диаме	Іскорость. Гобъем. Ітемп		томп	X_1	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	F	та, м	тр, м	м/с	M ³ /C	°C	X ₂	Y ₂	на, м	рел	ветра,	код	выброса, г/с	oc.	д.ПДК	ксиму-
					·		-	-			M/C		. , ,			ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объен	r:		1. Объ	ект №1 Про	т №1 Промплощадка 2											
Площ	адк	ta:	1. Плоц	ощадка №1												
Цех:																
7			1. Цех	Nº1												
1	4	5	1. Цех 15	№1	530,144	20	-23,7	18,5	-	1	25,74	2908	0,2	3	0,165	136,82
1	4	5		№1	530,144	20	-23,7 -8,7	18,5 26,5	-	1	25,74	2908	0,2	3	0,165	136,82
1	-	5	15	3	530,144 0,00118	20	,	,	-	1	25,74	2908 2908	,		,	136,82 42,75

1.2 Расчет загрязнения по веществу «2908. Пыль неорганическая: SiO2 20-70%»

Полное наименование вещества с кодом 2908 — Пыль неорганическая, содержащая 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.). Максимально разовая предельно допустимая концентрация составляет 0,3 мг/м³, класс опасности 3.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 3 (в том числе: организованных - 3, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 2; 11-20 M - 1; 21-29 M - Het; 30-50 M - Het; 51-100 M - Het; более 100 M - Het.

Суммарный выброс, учтенных в расчёте источников, составляет 0,435 грамм в секунду и 0 тонн в год.

Расчётных точек – 11, расчётных площадок - 1 (узлов расчётной сетки - 80).

Максимальная расчётная приземная концентрация (См), выраженная в долях ПДК населенных мест, по расчётной площадке № 1 составляет:

- на границе C33 **0,44**, которая достигается в точке № *4* X=-*50,78* Y=-*28,61*, при направлении ветра *34*°, скорости ветра *18,7* м/с, в том числе: вклад источников предприятия *0,44*.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.2.2.

Таблица № 1.2.2 - Параметры расчетных точек

Наименерание		Координаты		Тип точки
Наименование	X	Υ	высота, м	тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-23,57	61,07	2	Точка на границе ОС33
2	28,26	30,01	2	Точка на границе ОС33
3	13,58	-28,61	2	Точка на границе ОС33
4	-50,78	-28,61	2	Точка на границе ОС33
5	-63,33	34,51	2	Точка на границе ОС33
6	-53,8	41,2	2	Точка в промзоне
7	13,8	43,5	2	Точка в промзоне
8	14,78	-6,02	2	Точка в промзоне
9	16,1	-72,2	2	Точка в промзоне
10	-51,09	-69,95	2	Точка в промзоне
11	-52,4	-16,2	2	Точка в промзоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.2.3.

Таблица № 1.2.3 - Параметры расчетных площадок

		Координаты ср	единной линии		Ширина,	Высота,	Шаг	Шаг С33,
Наименование	точі	ка 1	точ	' '	м		•	
	X ₁ Y ₁		X ₂	Y ₂		M	сетки, м	M
1	2	3	4	5	6	7	8	9
1	-200	-13,24	181,6	-13,24	293,516	2	40	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.2.4.

Таблица № 1.2.4 - Параметры источников загрязнения атмосферы

		Параметры ГВС		С	Кос	ординаты			Опас.	Загрязняющее вещество			Макс.	Расст.		
Nº	П	Высо	Диаме	скорость,	объем,	темп.,	X_1	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	ī	та, м	тр, м	м/с	M ³ /C	°C	X ₂	Y ₂	на, м	рел	ветра,	код	выброса, г/с	OC.	д.ПДК	ксиму-
				W/C	W /C	C	^ 2	12	na, m		m/c		выороса, т/с	oc.	длідіх	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объек	т:		1. Объе	ект №1 Про	омплощад	ка 2										
Площа	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех І	Nº1												
1	4	5	15	3	530,144	20	-23,7	18,5	-	1	25,74	2908	0,2	3	0,165	136,82
							-8,7	26,5								
2	1	15	0,01	15	0,00118	20	-7,5	14,8	-	1	0,5	2908	0,01	3	0,032	42,75
3	1	4,5	2,5	10	49,087	20	-26,5	7,4	-	1	15,889	2908	0,225	3	0,386	96,75

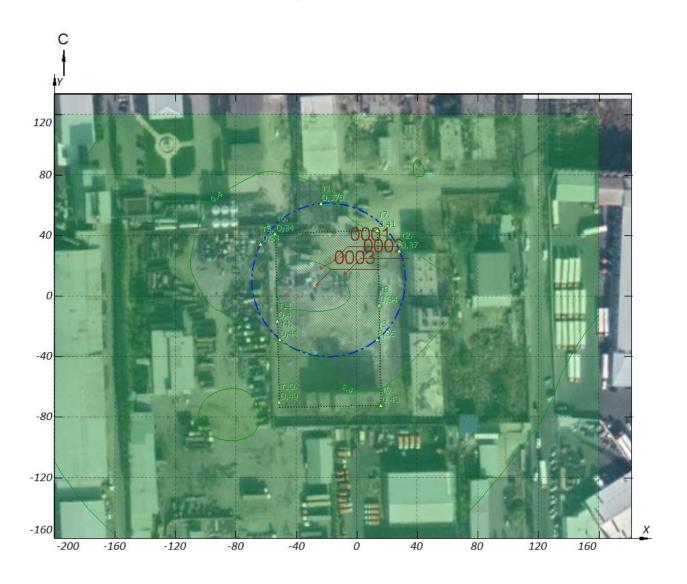
Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.2.5.

Таблица № 1.2.5 - Значения максимальных концентраций в расчетных точках

		Ко	ординаты			етная нтрация	- Фон,	Вклад предпр	Ветер: направлен		Вклад	ИЗА
Наименование	Тип	Х	Υ	высот а, м	д.ПДК	Mr/M³	д.ПДК	иятия <i>,</i> д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площа,	дка 1(СК	Основная СК)										
1	OC33	-23,57	61,07	2	0,376	0,113	-	0,376	183 个 15,9	1.1.3	0,36	95,1
2	OC33	28,26	30,01	2	0,37	0,112	-	0,37	248 → 16,6	1.1.3	0,36	97,3
3	OC33	13,58	-28,61	2	0,36	0,108	-	0,36	312 ∖⊒ 15,9	1.1.3	0,36	99
4	OC33	-50,78	-28,61	2	0,44	0,132	-	0,44	34 ∠ 18,7	1.1.3	0,33	74,5
5	OC33	-63,33	34,51	2	0,34	0,103	-	0,34	126 ┖ 15,8	1.1.3	0,34	99,9
6	Пром.	-53,8	41,2	2	0,34	0,102	-	0,34	141 ∖ 15,8	1.1.3	0,34	99,9
7	Пром.	13,8	43,5	2	0,41	0,122	-	0,41	229 7 16,9	1.1.3	0,35	86,5
8	Пром.	14,78	-6,02	2	0,34	0,102	-	0,34	288 → 15,8	1.1.3	0,34	99,9
9	Пром.	16,1	-72,2	2	0,43	0,128	-	0,43	333 ∖⊒ 17,4	1.1.3	0,375	88,1
10	Пром.	-51,09	-69,95	2	0,49	0,148	-	0,49	18 \(\psi \) 19	1.1.3	0,37	75,6
11	Пром.	-52,4	-16,2	2	0,4	0,119	-	0,4	47 🗹 18,1	1.1.3	0,31	78,6

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.2.6.

Таблица № 1.2.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1


	Коорд	инаты	Расчетная к	онцентрация		Вклад	Ветер		
Nº	Х	Υ	д.ПДК	Mr/M³	Фон, д.ПДК	предприятия <i>,</i> д.ПДК	направл., °	скорость, м/с	
1	2	3	4	5	6	7	8	9	
1	-200	-160	0,37	0,111	-	0,37	46 ∠	23	
2	-160	-160	0,4	0,12	ı	0,4	38 ∠	23	
3	-120	-160	0,425	0,128	1	0,425	29 ∠	22,6	
4	-80	-160	0,44	0,132	-	0,44	18 ↓	22,2	
5	-40	-160	0,44	0,132	1	0,44	5 ↓	21,9	
6	0	-160	0,43	0,129	-	0,43	352 ↓	21,9	
7	40	-160	0,41	0,123	-	0,41	340 ↓	22,2	

	Коорд	цинаты	Расчетная	концентрация		Вклад	Ветер		
Nº	х	Υ	д.ПДК	Mr/M³	Фон, д.ПДК	предприятия <i>,</i> д.ПДК	направл., °	скорость, м/с	
1	2	3	4	5	6	7	8	9	
8	80	-160	0,39	0,117	-	0,39	329 🛚	22,5	
9	120	-160	0,37	0,11	-	0,37	320 🛭	22,1	
10	160	-160	0,344	0,103	-	0,344	313 🛚	23	
11	-200	-120	0,4	0,119	-	0,4	53 ∠	23	
12	-160	-120	0,43	0,13	-	0,43	46 ∠	22,4	
13	-120	-120	0,465	0,139	-	0,465	36 ∠	21,9	
14	-80	-120	0,48	0,145	-	0,48	23 🗹	21,5	
15 16	-40 0	-120 -120	0,48 0,45	0,144 0,136	-	0,48	7 ↓ 349 ↓	21,1	
17	40	-120	0,43	0,130	_	0,45 0,43	334 🗓	20,5	
18	80	-120	0,43	0,123	_	0,41	322 🗓	21,3	
19	120	-120	0,39	0,117	-	0,39	312 🗓	22,1	
20	160	-120	0,364	0,109	-	0,364	306 🗸	23	
21	-200	-80	0,415	0,125	-	0,415	62 ∠	22,7	
22	-160	-80	0,46	0,137	-	0,46	56 ∠	21,9	
23	-120	-80	0,49	0,148	-	0,49	46 ∠	21,4	
24	-80	-80	0,52	0,155	-	0,52	32 ∠	19,8	
25	-40	-80	0,485	0,146	-	0,485	10 ↓	19,1	
26	0	-80	0,44	0,133	-	0,44	344 ↓	17,8	
27	40	-80	0,43	0,129	-	0,43	324 🛚	19,6	
28	80	-80	0,42	0,125	-	0,42	311 🗓	20,3	
29	120	-80	0,4	0,121	-	0,4	302 ⅓ 297 ⅓	21,4	
30 31	160 -200	-80 -40	0,38	0,114	-	0,38 0,42	74 ←	22,7 22,1	
32	-160	-40	0,42	0,127	_	0,46	69 ←	21,5	
33	-120	-40	0,49	0,148	_	0,49	62 Ľ	19,2	
34	-80	-40	0,49	0,147	-	0,49	48 ⊭	18,8	
35	-40	-40	0,426	0,128	-	0,43	17 ↓	18	
36	0	-40	0,37	0,11	-	0,37	331 🛚	16,8	
37	40	-40	0,4	0,12	-	0,4	306 万	16,3	
38	80	-40	0,416	0,125	-	0,42	295 ∖⊿	18,9	
39	120	-40	0,41	0,124	-	0,41	289 →	20,7	
40	160	-40	0,39	0,118	-	0,39	286 →	22,4	
41	-200	0	0,42	0,126	-	0,42	86 ←	22	
42 43	-160 -120	0	0,45	0,134 0,133	-	0,45	85 ←	21	
44	-80	0	0,44	0,111	_	0,44	84 ← 82 ←	18,2 16,6	
45	-40	0	0,283	0,085	_	0,283	61 🗹	16,8	
46	0	0	0,3	0,091	-	0,3	286 →	15,8	
47	40	0	0,38	0,114	-	0,38	277 →	15,9	
48	80	0	0,42	0,126	-	0,42	275 →	18,6	
49	120	0	0,42	0,127	-	0,42	274 →	20,8	
50	160	0	0,405	0,121	-	0,405	274 →	22,3	
51	-200	40	0,41	0,123	-	0,41	99 ←	22	
52	-160	40	0,43	0,129	-	0,43	102 ←	20,2	
53	-120	40	0,42	0,126	-	0,42	108 ←	17,4	
54 55	-80 -40	40 40	0,374 0,32	0,112	-	0,374	121 121 「158 ↑	15,9 16	
56	-40	40	0,32	0,096	-	0,32	219 🗷	17,1	
57	40	40	0,39	0,118	-	0,39	245 7	16,8	
58	80	40	0,45	0,135	-	0,45	254 →	19,7	
59	120	40	0,44	0,133	-	0,44	259 →	21,7	
60	160	40	0,41	0,123	-	0,41	261 →	22,1	
61	-200	80	0,4	0,119	-	0,4	111 ←	22,2	
62	-160	80	0,415	0,124	-	0,415	117 ↖	20,9	
63	-120	80	0,414	0,124	-	0,41	127 🤨	20,8	
64	-80	80	0,41	0,122	-	0,41	143 🤨	16,7	
65	-40 0	80 80	0,4	0,121	-	0,4	169 ↑	16,3	
66 67	40	80 80	0,46 0,5	0,137 0,151	-	0,46 0,5	199 ↑ 223 ⊅	18,2 19,6	
68	80	80	0,48	0,131	-	0,48	237 7	21,3	
69	120	80	0,48	0,135	_	0,48	245 7	22,1	
70	160	80	0,43	0,133	_	0,41	250 →	22,8	
71	-200	120	0,38	0,114	-	0,38	122 🔨	22,5	
72	-160	120	0,4	0,12	-	0,4	129 ↖	21,5	
				•					

Продолжение таблицы 1.2.6

	Коорд	инаты	Расчетная к	онцентрация		Вклад	Ветер		
Nº	Х	Υ	д.ПДК	MΓ/M³	Фон, д.ПДК	предприятия <i>,</i> д.ПДК	направл., °	скорость, м/с	
1	2	3	4	5	6	7	8	9	
73	-120	120	0,42	0,125	-	0,42	139 ┖	20,6	
74	-80	120	0,425	0,128	-	0,425	153 ┖	19,9	
75	-40	120	0,44	0,133	-	0,44	172 个	20,8	
76	0	120	0,48	0,143	-	0,48	192 个	20,6	
77	40	120	0,49	0,148	-	0,49	210 🗷	21,4	
78	80	120	0,48	0,143	-	0,48	224 🗷	22,1	
79	120	120	0,44	0,132	-	0,44	233 🗷	21,5	
80	160	120	0,4	0,12	_	0,4	240 🗷	23	

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:2500** на рисунке 1.2.1.

1.3 Мажорантный расчет загрязнения по всем веществам и группам суммаций

Расчёт загрязнения для мажоранты проводится по всем источникам загрязнения атмосферы и по всем веществам и группам суммации. При этом результат расчёта для каждой расчётной точки представляет собой наибольшее значение из максимальных расчётных концентраций, полученных для данной точки отдельно по каждому из веществ и групп суммации.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.3.1.

Таблица № 1.3.1 - Параметры расчетных точек

		Координаты		T
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-23,57	61,07	2	Точка на границе ОС33
2	28,26	30,01	2	Точка на границе ОС33
3	13,58	-28,61	2	Точка на границе ОС33
4	-50,78	-28,61	2	Точка на границе ОС33
5	-63,33	34,51	2	Точка на границе ОС33
6	-53,8	41,2	2	Точка в промзоне
7	13,8	43,5	2	Точка в промзоне
8	14,78	-6,02	2	Точка в промзоне
9	16,1	-72,2	2	Точка в промзоне
10	-51,09	-69,95	2	Точка в промзоне
11	-52,4	-16,2	2	Точка в промзоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.3.2.

Таблица № 1.3.2 - Параметры расчетных площадок

		Координаты ср	единной линии		Ширина,	Рисота	Шаг	Шаг С33,
Наименование	точі	ка 1	точ		1		-	
	X ₁	Υ ₁	X ₂	Y ₂	М	М	сетки, м	М
1	2	3	4	5	6	7	8	9
1	-200	-13,24	181,6	-13,24	293,516	2	40	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.3.3.

Таблица № 1.3.3 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВО	С	Ko	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	ПиП	Высо	Диаме	скорость,	объем,	темп.,	X_1	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	F	та, м	тр, м	м/с	M ³ /C	°C	X ₂	Y ₂	на, м	рел	ветра,	код	выброса, г/с	oc.	д.ПДК	ксиму-
				, c	/ 0	Ů	, NZ	12	,		m/c		55.0p00a, ., o		H H	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объе	кт:		1. Объ	ект №1 Про	омплощад	ка 2										
Плош	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех	Nº1												
1	4	5	15	3	530,144	20	-23,7	18,5	-	1	25,74	2908	0,2	3	0,165	136,82
							-8,7	26,5						<u> </u>		
2	1	15	0,01	15	0,00118	20	-7,5	14,8	-	1	0,5	2908	0,01	3	0,032	42,75
3	1	4,5	2,5	10	49,087	20	-26,5	7,4	I	1	15,889	2908	0.225	3	0,386	96,75

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.3.4.

Таблица № 1.3.4 - Значения максимальных концентраций в расчетных точках

		Ко	ординаты			Расчетная концентрация		Вклад	Ветер: направлен		Вклад	ИЗА
Наименование	Тип	Х	Y	высот а, м	д.ПДК	код ЗВ	Фон <i>,</i> д.ПДК	предпр иятия, д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площад	дка 1(СК	Основная СК)										
1	OC33	-23,57	61,07	2	0,376	2908	-	0,376	183 ↑ 15,9	1.1.3	0,36	95,1
2	OC33	28,26	30,01	2	0,37	2908	-	0,37	248 → 16,6	1.1.3	0,36	97,3
3	OC33	13,58	-28,61	2	0,36	2908	-	0,36	312 ∖⊒ 15,9	1.1.3	0,36	99
4	OC33	-50,78	-28,61	2	0,44	2908	-	0,44	34 ∠ 18,7	1.1.3	0,33	74,5
5	OC33	-63,33	34,51	2	0,34	2908	-	0,34	126 ┖ 15,8	1.1.3	0,34	99,9
6	Пром.	-53,8	41,2	2	0,34	2908	-	0,34	141 ∖ 15,8	1.1.3	0,34	99,9
7	Пром.	13,8	43,5	2	0,41	2908	-	0,41	229 ⊅ 16,9	1.1.3	0,35	86,5
8	Пром.	14,78	-6,02	2	0,34	2908	-	0,34	288 → 15,8	1.1.3	0,34	99,9
9	Пром.	16,1	-72,2	2	0,43	2908	-	0,43	333 ⅓ 17,4	1.1.3	0,375	88,1
10	Пром.	-51,09	-69,95	2	0,49	2908	-	0,49	18 19	1.1.3	0,37	75,6
11	Пром.	-52,4	-16,2	2	0,4	2908	-	0,4	47 ∠ 18,1	1.1.3	0,31	78,6

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.3.5.

Таблица № 1.3.5 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

	Коорд	инаты	Расчетная і	концентрация		Вклад	Ве	тер
Nº	X	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл.,°	скорость, м/с
1	2	3	4	5	6	7	8	9
1	-200	-160	0,37	2908	-	0,37	46 ∠	23
2	-160	-160	0,4	2908	-	0,4	38 ∠	23
3	-120	-160	0,425	2908	-	0,425	29 ∠	22,6
4	-80	-160	0,44	2908	-	0,44	18 ↓	22,2
5	-40	-160	0,44	2908	-	0,44	5 ↓	21,9
6	0	-160	0,43	2908	-	0,43	352 ↓	21,9
7	40	-160	0,41	2908	-	0,41	340 ↓	22,2
8	80	-160	0,39	2908	-	0,39	329 ⅓	22,5
9	120	-160	0,37	2908	-	0,37	320 ⅓	22,1
10	160	-160	0,344	2908	-	0,344	313 🛚	23
11	-200	-120	0,4	2908	-	0,4	53 ∠	23
12	-160	-120	0,43	2908	-	0,43	46 ∠	22,4
13	-120	-120	0,465	2908	-	0,465	36 ∠	21,9
14	-80	-120	0,48	2908	-	0,48	23 ∠	21,5
15	-40	-120	0,48	2908	-	0,48	7 ↓	21,1
16	0	-120	0,45	2908	-	0,45	349 ↓	20,5
17	40	-120	0,43	2908	-	0,43	334 ↘	20,5
18	80	-120	0,41	2908	-	0,41	322 ⅓	21,3
19	120	-120	0,39	2908	-	0,39	312 🛚	22,1
20	160	-120	0,364	2908	-	0,364	306 ⅓	23
21	-200	-80	0,415	2908	-	0,415	62 ∠	22,7
22	-160	-80	0,46	2908	-	0,46	56 ∠	21,9
23	-120	-80	0,49	2908	-	0,49	46 ∠	21,4
24	-80	-80	0,52	2908	-	0,52	32 ∠	19,8

Продолжение таблицы 1.3.5

Nº	Координаты		Расчетная концентрация			Вклад	Ветер	
	Х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
25	-40	-80	0,485	2908	-	0,485	10 ↓	19,1
26	0	-80	0,44	2908	-	0,44	344 ↓	17,8
27	40	-80	0,43	2908	-	0,43	324 ↘	19,6
28	80	-80	0,42	2908	-	0,42	311 🛚	20,3
29	120	-80	0,4	2908	-	0,4	302 ⅓	21,4
30	160	-80	0,38	2908	-	0,38	297 🛚	22,7
31	-200	-40	0,42	2908	-	0,42	74 ←	22,1
32	-160	-40	0,46	2908	-	0,46	69 ←	21,5
33	-120	-40	0,49	2908	-	0,49	62 ∠	19,2
34	-80	-40	0,49	2908	-	0,49	48 ∠	18,8
35	-40	-40	0,426	2908	-	0,43	17 ↓	18
36	0	-40	0,37	2908	-	0,37	331 ⅓	16,8
37	40	-40	0,4	2908	-	0,4	306 万	16,3
38	80	-40	0,416	2908	-	0,42	295 🛚	18,9
39	120	-40	0,41	2908	-	0,41	289 →	20,7
40	160	-40	0,39	2908	-	0,39	286 →	22,4
41	-200	0	0,42	2908	-	0,42	86 ←	22
42	-160	0	0,45	2908	-	0,45	85 ←	21
43	-120	0	0,44	2908	-	0,44	84 ←	18,2
44	-80	0	0,37	2908	-	0,37	82 ←	16,6
45	-40	0	0,283	2908	-	0,283	61 🗹	16,8
46	0	0	0,3	2908	-	0,3	286 →	15,8
47	40	0	0,38	2908	-	0,38	277 →	15,9
48 49	80	0	0,42	2908	-	0,42	275 →	18,6
	120	0	0,42	2908	-	0,42	274 →	20,8
50 51	160 -200	40	0,405	2908 2908	-	0,405	274 → 99 ←	22,3 22
52	-160	40	0,41	2908	-	0,41 0,43	102 ←	20,2
53	-100	40	0,43	2908	-	0,43	102 ←	17,4
54	-80	40	0,42	2908	-	0,374	121 🔨	15,9
55	-40	40	0,374	2908	_	0,32	158 ↑	16
56	0	40	0,39	2908	_	0,39	219 🗷	17,1
57	40	40	0,414	2908	_	0,41	245 7	16,8
58	80	40	0,45	2908	_	0,45	254 →	19,7
59	120	40	0,44	2908	_	0,44	259 →	21,7
60	160	40	0,41	2908	_	0,41	261 →	22,1
61	-200	80	0,4	2908	_	0,4	111 ←	22,2
62	-160	80	0,415	2908	_	0,415	117 🔨	20,9
63	-120	80	0,414	2908	-	0,41	127 ┖	20,8
64	-80	80	0,41	2908	-	0,41	143 🔨	16,7
65	-40	80	0,4	2908	-	0,4	169 ↑	16,3
66	0	80	0,46	2908	-	0,46	199 ↑	18,2
67	40	80	0,5	2908	-	0,5	223 🗷	19,6
68	80	80	0,48	2908	-	0,48	237 🗷	21,3
69	120	80	0,45	2908	-	0,45	245 🗷	22,1
70	160	80	0,41	2908	-	0,41	250 →	22,8
71	-200	120	0,38	2908	-	0,38	122 ↖	22,5
72	-160	120	0,4	2908	-	0,4	129 ┖	21,5
73	-120	120	0,42	2908	-	0,42	139 ┖	20,6
74	-80	120	0,425	2908	-	0,425	153 ↖	19,9
75	-40	120	0,44	2908	-	0,44	172 个	20,8
76	0	120	0,48	2908	-	0,48	192 ↑	20,6
77	40	120	0,49	2908	-	0,49	210 🗷	21,4
78	80	120	0,48	2908	-	0,48	224 🗷	22,1
79	120	120	0,44	2908	-	0,44	233 🗷	21,5
80	160	120	0,4	2908	-	0,4	240 🗷	23

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:2500** на рисунке 1.3.1.

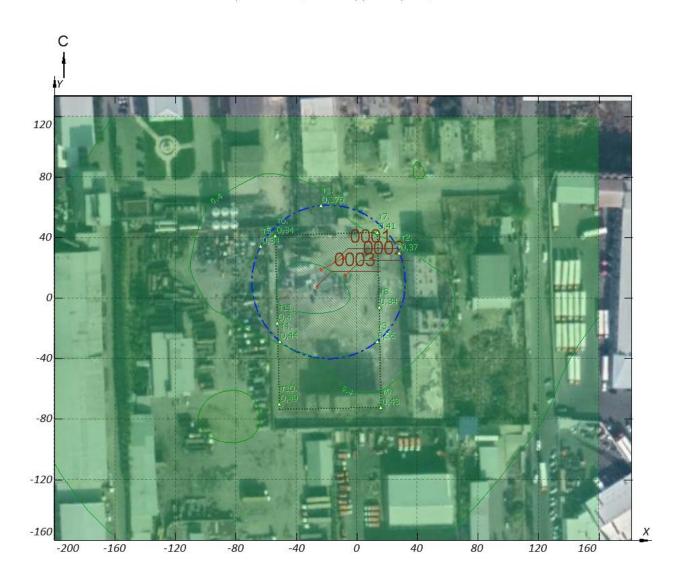


Рисунок 1.3.1 - Вариант № 1; Расчетная площадка №1

ԿԱԶՄԱԿԵՐՊՉԱԿԱՆ-ՏԵԽՆԻԿԱԿԱՆ ՄԻԶՈՑԱՈՈՍՆԵՐ ԱՆԲԱՐԵՆՊԱՍՏ ԿԼԻՄԱՅԱԿԱՆ ՊԱՅՄԱՆՆԵՐԻ ԺԱՄԱՆԱԿ

Անբարենպաստ եղանակի դեպքում արտանետումների կարգավորման միջոցառումները կրում են կազմակերպչական-տեխնիկական բնույթ և գործնականորեն ընդգրկում են վնասակար նյութերի արտանետումների բոլոր աղբյուրները։

- 1. Թույլ չտալ սարքավորման գերբեռնված աշխատանք
- 2 Խստորեն հետևել տեխնոլոգիայի ընթացակարգին
- 3. Սաիմանափակել փոշու արտանետումը
- 4. Չդատարկել լուծիչներ, հեշտ բոցավառվող նյութեր
- 5. Կնասակար նյութերի արտանետումների քանակի մեծացման դեպքում հարկ է անմիջապես դանդաղեցնել կամ ժամանակավորապես դադարեցնել տվյալ սարքավորման աշխատանքը։

ՄԻԶՈՑԱՌՈՒՄՆԵՐ, ՈՐՈՆՔ ՆԱԽԱՏԵՍՎՈՒՄ ԵՎ ԻՐԱԿԱՆԱՑՎՈՒՄ ԵՆ ԱՐՏԱՆԵՐԻ ՎԵՐԱՀՍԿՄԱՆ ԵՎ ՍԹԱ ԿԱՏԱՐՄԱՆ ՆՊԱՏԱԿՈՎ

Քանի որ ՍԹԱ կատարման համար պատասխանատու է ձեռնարկությունը, արտանետումներին հետևում և ստուգում է բնության պահպանության համար պատասխանատու անձր։

Վնասակար նյութերի արտանետումների քանակը որոշվում է այդ վնասակար նյութերի խտությունների և գազերի օդային խառնուրդների ծավալների ուղղակի չափման մեթոդներով։ Ուղղակի չափման մեթոդների անհնարինության դեպքում թույլատրվում է տեսական հաշվարկի մեթոդը։ Անբարենպաստ կլիմայական պայմանների ժամանակ, բնակչության առողջության համար մթնոլորտի վնասաբեր աղտոտման ընթացքում ձեռնարկությունը պարտավոր է վնասակար նյութերի արտանետումները իջեցնել ընդհուպ մինչև աշխատանքի դադարեցումը։

Եթե վթարի արդյունքում ՍԹԱ -ի նորմատիվը գերազանցվում է, կազմակերպությունը պարտավոր է այդ մասին հայտնել մթնոլորտի պահպանությունը վերահսկող մարմնին և անհապաղ միջոցներ ձեռնարկել վնասակար նյութերի արտանետումները սահմանափակելու ուղղությամբ, ինչպես նաև ՀՀ ԱՆ ՊՀՀ տեսչություն տեղեկատվություն հաղորդել վթարի և ձեռնարկված միջոցառումների մասին(վնասակար նյութերի կոնցենտրացիաների չափումներ մոտակա բնակավայրերում)։

บากยุยากบนหนาก อุนหนากายสงคว

- 1. ГОСТ 17.2. 3. 02 78 "Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями".
- 2. Временная методика нормирования промышленных выбросов в атмосферу. Ленинград, Гидрометеоиздат, 1986г.
- 3. Сборник методик по расчету выбросов в атмосферу загрязняющих веществ раз личными производствами. Ленинград, Гидрометеоиздат, 1986г.
- 4. Рекомендации по оформлению и содержанию проекта нормативов предельно допустимых выбросов в атмосферу (ПДВ) предприятий.
- 5.Временная инструкция о порядке проведения работ по установлению нормативов допустимых выбросов вредных веществ в атмосферу для отдельно нормируемых предприятий промышленности, ОНД-86.

Обсерватория имени А.И. Воейкова Госкомгидромета, 1986г.

- 6.ՀՀ կառավարության 02.02.2006թ. որոշում № 160-Ն «Բնակավայրերում մթնոլորտային օդն աղտոտող նյութերի սահմանային թույլատրելի խտությունների (կոնցենտրացիաների-ՍԹԿ) նորմատիվները հաստատելու մասին»
- 7. ՀՀ կառավարության 27.12.2012 թ. որոշում № 1673-Ն «Մթնոլորտային օդն աղտոտող նյութերի սահմանային թույլատրելի արտանետումների նորմատիվների մշակման ու հաստատման կարգը սահմանելու և ՀՀ կառավարության 1999թ. մարտի 30-ի N 192 և 2008թ. օգոստոսի 21-ի N 953-Ն որոշումներն ուժը կորցրած Ճանաչելու մասին»
- 8. ՀՀ կառավարության 2005 թվականի հունվարի 25-ի N 91-Ն որոշում

Երևան Արաբկիր

Ամենատաք ամսվա օդի միջին առավելագույն ջերմաստիճան (°C)-

31.8

Քամու ուղղության և անդորրի կրկնելիությունը (%)

ζu	Հս Արլ	Արլ	Հվ Արլ	૮ ૫	Հվ Արմ	Արմ	Հս Արմ	Անդորր
18	31	6	6	11	17	8	3	22

Երևան Էրեբունի

Ամենատաք ամսվա օդի միջին առավելագույն ջերմաստիճան (°C)-

33.3

Քամու ուղղության և անդորրի կրկնելիությունը (%)

ζu	Հս Արլ	Արլ	Հվ Արլ	<પ્	Հվ Արմ	Արմ	Հս Արմ	Անդորը
8	17	8.	12	20	19	11	5	56

Հիդրոօդերևութաբանական տեղեկատվությամբ

սպասարկման և մարկետինգի բաժնի պետ

ՈԵԼՅԵՖԻ ԳՈՐԾԱԿՑԻ ՀԱՇՎԱՐԿԸ

Ընկերության 2 տարածքները գտնվում են Երևանում հարթ տեղանքում, խոչընդոտներ չկան։

Ըստ ОНД — 86 —ի` hարթ կամ թույլ կտրտված տեղանքում, որտեղ բարձրության փոփոխությունը 1 կմ վրա չի գերազանցում 50 մ, տեղանքի ռելյեֆի գործակիցը ընդունվում է 1.0: