«ՈՍՄԱՐ» ՍՊԸ *Կանաձոր տեղամաս*

นายาวยาเลยาท บนสุบนบนสหา ดูกเลเนราชเห นายนบนรายบนชาห (บดูน) บกาบนรหสุบชาห บนคมพี่มี

STOPPT 4. KUYNPSUT **NUUUN** **BOCMAP** **VOSMAR** 09208107

brb4UU - 2025

Կատարողների ցանկ` Անկախ փորձագետ` – Ա. Սահակյան Համակարգչային հաշվարկը կատարվել է «Էկո ցենտր» ծրագրի միջոցով։

นบบกรนยหน

Ոեսումնասիրության օբյեկտ են հանդիսանում «ՈՍՄԱՐ» ՍՊԸ *Կանաձոր տեղամասի* արտանետումները։

«ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամասը* հիմնականում զբաղվում է ասֆալտ-բետոնի արտադրությամբ։

Ընկերությունը ունի մթնոլորտ աղտոտող 4 աղբյուրներ, որից արտանետվում են 4 վնասակար նյութեր։

Արտանետումների ընդհանուր քանակը կազմում է 41.582տ/տարի։

 Փոշի անօրգանական(SiO 2 20 -70%)
 - 28.0տ./տարի

 Ածխածնի օքսիդ
 - 7.513տ./տարի

 Ազոտի օքսիդներ (երկօքսիդի հաշվարկով)
 - 2.569տ./տարի

 Ածխաջրածիններ
 - 3.500տ./տարի

Հաշվարկները կատարվել են տարեկան 100000 տոննա ասֆալտ - բետոնի և 800 000 \mathfrak{d}^3 /տարի գազի ծախսի համար։

Գումարային հատկության նյութեր չկան:

ՍԹԱ նորմատիվներին հասնելու ժամկետը համարվում է հաստատման պահից։ Ընկերության արտանետումները չեն գերազանցում այդ վնասակար նյութերի համար սահմանված չափանիշները, այդ պատձառով արտանետումների քանակն իջեցնող միջոցառումների պլան չի նախատեսվում։ Աղտոտող նյութերի գետնամերձ խտությունները չեն գերազանցում համապատասխան նյութերի ՍԹԽ, դրա համարանիրաժեշտ ծախսեր չի նախատեսված։

Արտանետումների հետևանքով շրջակա միջավայրին հասցվելիք վնասի մեծությունը կազմում է **1320502**դրամ, հաշվարկը տես հավելված 2-ում։

- «ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամասի* փաստացի արտանետումների ցուցանիշների հիման վրա հաշվարկվել է օդի պահանջվող օգտագործումը (ՕՊՕ-ի հաշվարկը հավելված-1), որի արդյունքում պարզվել է, որ ձեռնարկության արտանետումները մեկ տարում գերազանցում են երկու միլիարդ մ³ չափանիշը (350.229մլրդմ³/տարի), ուստի արտանետման չափաքանակները կարող են սահմանվել ՍԹԱ նախագծի հիման վրա։

Նախագծի մշակման համար հիմք է հանդիսացել 04.01. 2024թ. N 32 -Ն որոշումը «Մթնոլորտային օդն աղտոտող (վնասակար) նյութերի սահմանային թույլատրելի արտանետումների նորմատիվների նախագծերի մշակման և սահմանային թույլատրելի

արտանետումների նորմատիվների նախագիծ ներկայացված իրավաբանական անձանց և ձեռնարկատիրական գործունեությամբ զբաղվող ֆիզիկական անձանց արտանետման թույլտվությունների տրամադրման կամ մերժման կամ ուժը կորցրած Ճանաչելու մասին կարգը հաստատելու մասին»

Աշխատանքի նպատակն է մշակել մթնոլորտն աղտոտող վնասակար նյութերի սահմանային թույլատրելի արտանետումների (ՍԹԱ) նորմատիվների նախագիծը։

Աշխատանքում ի մի են բերվել ձեռնարկության գործունեությունից առաջացող մթնոլորտն աղտոտող աղբյուրների արտանետումների որակական և քանակական բնութագրերը։

Ներկա աշխատանքում բերված են աղտոտման աղբյուրների տեխնիկական հետազոտման արդյունքների տվյալները` տեքստային և աղյուսակային տեսքով։

Կատարված է մթնոլորտն աղտոտող նյութերի ցրման հաշվարկը

PN4UUNU4NH03NHU

Անոտացի	าเน
---------	-----

1. Տնտեսվարող սուբյեկտի մասին ընդհանուր տեղեկություններ	- 6
2. Տնտեսվարող սուբյեկտի բնութագիրը որպես մթնոլորտային	
օդն աղտոտող աղբյուր	- 9
3. Մթնոլորտ արտանետվող աղտոտող նյութերի անվանացանկը	- 12
4. Զարկային արտանետումներ ունեցող աղբյուրների թվարկումը և բնութագիրը	- 13
5 .ՍԹԱ նորմատիվների հաշվարկի համար աղտոտող նյութերի պարամետրերը	- 14
6.ՍԹԱ նորմատիվների հաշվարկի համար անհրաժեշտ ելակետային	
տվյալները	- 17
7. Վնասակար նյութերի արտանետումների ցրման հաշվարկը	- 18
8. Վնասակար նյութերի ցրման հաշվարկի հակիրՃ արդյունքները	-19
9. Մթնոլորտ ամենամեծ աղտոտումներ առաջացնող աղբյուրների ցուցակը	- 20
10. ՍԹԱ նորմատիվներ հասնելու միջոցառումների ծրագիր	- 21
11. Աղտոտող նյութեր մթնոլոր արտանետելու չափաքանակներ	
արտանետման թույլտվություն	- 22
12. Անբարենպաստ կլիմայական պայմանների ժամանակ արտանետումների	
կարգավորման միջոցառումներ	- 23
13.Արտանետումների վերահսկման և ՍԹԱ կատարման նպատակով	
նախատեսվող և իրականացվող միջոցառումներ	- 24
Օգտագործված գրականություն	- 30
Հավելվածներ`	
- ՕՊՕ-ի Հաշվարկը ըստ տվյալ ձեռնարկության-հավելված-1	- 25
- Վնասի հատուցման հաշվարկը -հավելված-2	- 26
Ձեռնարկության պլան-սխեման	
Ռելիեֆի գործակիցը	
Կլիմայական տվյալներ	
Ֆոնային աղտոտվածության տվյալներ	
Մեքենայական հաշվարկներ	

1. รบรธบนนากา บกหวรธนรห บนบหบ กบาว(นบกหา รธาธนกหอรกหบบธา

«ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամասը* հիմնականում զբաղվում է Ճանապարհաշինարարական, վերանորոգման և շահագործման աշխատանքներով։ Նշված աշխատանքներն իրականացնելու համար, իր ենթակայության տակ ունի ասֆալտ-բետոնի արտադրություն։

Ձեռնարկությունը գտնվում է Կանաձոր քաղաքի արտադրական հանգույցում, «ՇԻՆԻՐԵՐ» ՍՊԸ հարևանությամբ, բնակելի թաղամասերից հեռու։

Տեղադրված է տեղանքի իրավիձակային քարտեզը որտեղ երևում է, որ մոտակայքում բացակայում է նախադպրոցական, դպրոցական, կազմակերպություններ, հիվանդանոցներ, սննդի օբյեկտներ, անտառային, գյուղատնտեսական մշակահողեր և այլն։

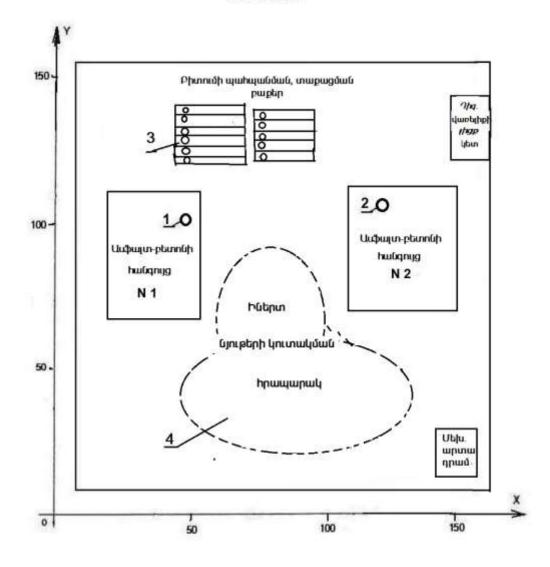
Արտադրական բոլոր գործողությունները կատարվում են մեկ տարածքի վրա։ «ՎԱՐՄԱՇ» ՍՊԸ արտադրական հանգույցը օտարվել է «ՈՍՄԱՐ» ՍՊԸ-ին։

Համաձայն CH-245-71 տվյալ արտադրությունը 300մ չափով սանիտարապաշտպանական գոտով պատկանում է 3 -րդ դասին։

Պետ.ռեգիստրի գրանցման համարը` 18.110.00511 տրված 04.04.2002թ.

Իրավաբանական հասցեն`

ՀՀ Սյունիքի մարզ, ք. Գորիս, Երևանյան խՃուղի 17.17/1.


Գործունեության հասցեն`

ՀՀ Լոռու մարզ, ք. Վանաձոր, Գործարանային փողոց 15

ՍԽԵՄԱ Վնասակար նյութերի արտանետման աղբյուրների

«ՈՍՄԱՐ» ՍՊԸ *Կանաձոր տեղամաս*

U 1: 1000

Տեղանքի իրավիձակային քարտեզ «ՈՍՄԱՐ» ՍՊԸ *Վանածոր տեղամաս*

Վանածոր տեղամաս

2. รบรธบนนากา บกหารธนรห คบกหอนฉหาย กาๆธบ บอบกเการนรหบ ดาบ นารกรกา นาครกหา

«ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամասը* արտադրության գործընթացում մթնոլորտ արտանետվող վնասակար նյութերի հիմնական աղբյուր են հանդիսանում հետևյալ գործընթացները՝

- **Իներտ նյութերի կուտակման բաց հրապարակը** /խիձ, ավազ/
- N1, N2 ասֆալտ-բետոնի հանգույցները
- Բիտումի պահպանման, տաքացման բաքերը

<u> Արտադրության բնութագիրը՝</u>

- *Ասֆալտ-բետոնի հանգույցներում* տեղադրված են ասֆալտ-բետոնի պատրաստման երկու հոսքագծեր` ԴՍ-117 - 2Կ և ԴՍ-158-Կ-91 մակնիշների, նախատեսված են 100000 տ/տարի ասֆալտ-բետոնի արտադրության համար։

Ասֆալտ-բետոնի պատրաստման պրոցեսն ընթանում է հետևյալ փուլերով`

- Իներտ նյութերի (ավազ, խիձ) բեռնաթափում, խառնում դասակույտերով և նրանց բնական չորացում, որոնք հանդիսանում են փոշու արտանետման հիմնական աղբյուրներից մեկը։
- Կոնվեերի միջոցով չափավորվող բունկերից իներտ նյութերը փոխադրվում են չորացնող թմբուկ, որտեղ նրանք տաքացվում են 140-160°C:
- Տաքացված իներտ նյութերի տեսակավորումն իրականացվում է ըստ մասազատիչների շերեփավոր էլեվատորի և վիբրացիոն քարմաղի օգնությամբ։ Տեսակավորված բաղադրամասերը տեղավորվում են առանձին խցերում։
- Բիտումի տաքացումը և ջրազրկումը կատարվում է գազայրիչի միջոցով, ծխախողովակ ունեցող բիտումի բաքերում։

Հալված բիտումը տրվում է խողովակաշարով ասֆալտ-բետոնի կայանքի դոզատոր, տեղի է ունենում բոլոր կոմպոնենտների խառնում։

- Պատրաստի ասֆալտ-բետոնը բեռնաթափվում է կուտակման բունկեր կամ անմիջապես ավտոինքնաթափերի մեջ։

Արտանետման հիմնական աղբյուր է հանդիսանում ասֆալտախառնիչ սարքերը, որի կազմի մեջ մտնում են սնման, չորացման, չափավորման և խառնիչ ագրեգատները, բիտումի տարողությունները։

Իներտ նյութերի տաքացման համար գազի այրման ընթացքում չորացնող թմբուկում առաջանում են տաք ծխագազեր և փոշի, որոնք մտնում են մրրիկային փոշեորսիչ մարտկոցային ցիկլոններ և լրացուցիչ մաքրվելուց հետո արտանետվում են մթնոլորտ։

- N 1 ԴՍ-117-2Կ աֆսալտ-բետոնի հանգույցը հիմնականում աշխատում է բնական գազով, որի ծախսը կազմում է **400000մ³/տարի։**
- N 2 -ԴՍ -158-Կ-91- աֆսալտ-բետոնի հանգույցը հիմնականում աշխատում է բնական գազով, որի ծախսը կազմում է 350000մ³/տարի։

Նշված գործընթացից արտանետվում են` անօրգանական փոշի, ածխածնի օքսիդ, ազոտի օքսիդներ, ածխաջրածիններ N 1, 2 աղբյուրներից։

- Բիտումի տաքացումը և ջրազրկումը կատարվում է գազայրիչի միջոցով, ծխախողովակ ունեցող բիտումի բաքերում – 11 հատ - գազի ծախսը - **50000մ³/տարի։**
- *Բիտումի* պահեստավորումից և տաքացումից արտանետվում են ածխաջրածիններ, ածխածնի օքսիդ և ազոտի օքսիդներ N 3 աղբյուրից։

Բիտումի բաքերը, որոնք ունեն միևնույն պարամետրերով ծխնելույզներ, որոնք ունեն բարձրություն, ելանցքի տրամագծեր, մթնոլորտ ելքի արագության և գազաօդային խառնուրդի ջերմաստիձանի հավասար նշանակություններ, ընդորում համաձայն ՕՆԴ-86-ի 3 խողովակները հաշվարկված են որպես աղբյուրների խումբ։

Ընդհանուր գազի ծախսը կազմում է -800 000 մ 3 /տարի (պահեստային վառելիք նախատեսված չէ):

- *Իներտ նյութերի կուտակման հրապարակից* (ավազի, խիձի) բեռնաթափման, պահեստավորման և տեղափոխման ժամանակ արտանետվում է անօրգանական փոշի N 4 աղբյուրից։

Փոշու արտանետումները նվազեցնելու համար հաձախ տարածքը ջրում են։

- *Մեխանիկական արտադրամասում* կատարվում է հաստոցների ընթացիկ վերանորոգման և ինչպես նաև էլեկտրաեռակցման աշխատանքներ։ Արտանետվում է մետաղի փոշի, եռակցման աերոզոլ, մանգանի օքսիդներ։

Նշված աշխատանքները չկարգավորված արտանետման աղբյուրներ են, որոնք ունեն չնչին արտանետումներ, այդ պատձառով հաշվարկներում չի ընդգրկվել։

- *Դիզ. վառելիքի լիցքավորման կետում* կատարվում է ավտոմեքենարի լիցքավորման աշխատանքներ, որի գործընթացից արտանետվում է չնչին քանակությամբ ածխաջրածիններ, այդ պատձառով հաշվարկներում չի ընդգրկվել։

- Ասֆալտ-բետոնի հանգույցները հագեցված է մաքրման փոշեորսիչներով՝ ցիկլոններով։ Փոշին մտնում է փոշեորսիչ ցիկլոններ և լրացուցիչ մաքրվելուց հետո արտանետվում է մթնոլորտ։

Իներտ նյութերի բաց պահեստները հաձախ ջրում են փոշու արտանետումները մեղմացնելու համար։

Ուստի տեխնոլոգիական և փոշեգազամաքրման սարքավորումների արդիականության և տվյալ արտադրության լավագույն հասանելի տեխնոլոգիաների կիրառում չի նախատեսվում։

- Տեխնոլոգիական սարքավորումների քանակը, արտանետման աղբյուրների պարամետրերը, վնասակար նյութերի արտանետումների քանակը և տեսակը բերված են աղյուսակ 3-ում։

Մոտակա տարիների ընթացքում ձեռնարկության ընդլայնման, վերազինման, վերապրոֆիլարման, տեխնոլոգիական ծավալների փոփոխություններ չեն սպասվում, ուստի աղյուսակ 3 հեռանկար սյունյակը չի լրացվում։

3. ปลิบกเการ นารนบธรนกา นารกรกา บลกหลธาก นบนนบนชนบน

นารกะบนฯ 1

Նյութի անվանումը	UԹԽ մգ/մ³	Արտանետումները տ/տարի
Փոշի անօրգանական (SiO ₂ 20 -70%)	0.3	28.0
Ածխածնի օքսիդ	5.0	7.513
Ազոտի օքսիդներ (երկօքսիդի հաշվարկով)	0.2	2.569
Ածխաջրածիններ	1.0	3.500

Գումարային հատկության նյութեր չկան։

นา30เบนฯ 2.

Ī	Արտադրամասի	Նյութի	Նյութի	Արտանետման	Արտանետման	Ձարկային
	(տեղամասի)	անվանումը	զարկային	պարբերական	տևողությունը,	արտանետումնե
	և աղբյուրների		արտանետումը	ությունը,	վրկ	րի տարեկան
	անվանումները		գ/զարկ	(անգամ/ տարի)		քանակությունը,
						unû.
Ĺ						
	1	2	3	4	5	6

Տեխնոլոգիական գործընթացից զարկային արտանետումներ չեն առաջանում, այդ պատՃառով աղյուսակ 2-ը չի լրացվել։

Աղյուսակ 3

Արտադրություն, արտադրամաս	Աղտոտող նյութ առաջացման աղբյr	ւրներ		աժամը մա տարում		Արտանե ման աղբյ ների անվանու	ուր-	նե	չյուր iրի ւակը	Աղբյr կարգ թիկ	դա-
	Անվանումը	Քանւ	սկը	1						1	
	1	ЪЧ	<	ЪЧ	<	<i>ሁ</i> ላ	<	ՆՎ	<	ЪЧ	<
1	2	3	4	5	6	7	8	9	10	11	12
Ասֆալտ- բետոնի հանգույց N1	Նախ.դոզավորման բունկերներ ժապ. փոխադրիչ Ասֆալտբետոնի հանգ. ԴՍ- 117-2 չորացնող թմբուկ խառնիչ	3 1 1 1 1		2400		խողո- վակ		1		1	
Ասֆալտ- բետոնի հանգույց N2	Նախ.դոզավորման բունկերներ Ժապ. փոխադրիչ Ասֆալտբետոնի հանգ. ԴՍ- 158 K-91 չորացնող թմբուկ խառնիչ	3 1 1 1		2400		խողո- վակ		1		2	
Բիտումի պահպանման, տաքացման բաքեր	Բիտումի բաքեր գազայրիչով	11		2400		խողո- վակ		11		3	
Իներտ նյութերի կուտակման հրապարակ	Իներտ նյութերի պահպանում և բեռնաթափում	2		3500		անկազ- մակերպ		1		4	

3-րդ աղյուսակի շարունակությունը

	Աղբյուրի կարգաթիվը		Աղբյուրի բարձրությունը, մ		ագիծը Գազաօդային մ արտանետմս						որերը
	,				արաժ թյունը վ	-	ծավա մ³/վր		ջերմա Ճա(
$\mathcal{U}\mathcal{U}$	<	ЪЧ	<	ЪЧ	<	ЪЧ	4	ՆՎ	<	ՆՎ	<
11	12	13	14	15	16	17	18	19	20	21	22
1		18		0.8		27.5		13.82		140	
2		18		0.8		24.2		12.16		130	
3		10		0,3		20,4		1.44		90	
4		8		80		4.0		20106,2		20	

3-րդ աղյուսակի շարունակությունը

Աղբյr կարգ թիկ	դա-	Կոորդին	ւատները յ	քարտե	մաքրող սարքերի		մաքրող նյութերը				ն ոծմա																						
		կետ աղբյուր յուրներ կենտրո գծային ս ծա	,, աղբ- ի խմբի ւնի կամ ւղբ. 1-ին	գծային յուրի ծայ	2 -րդ																									Ապահ վածուլ գործահ %	թյան	Մաքրմ առավէ գույն չա %	այւ
ЪЧ	<	X_1	Y_1	<i>X</i> ₂	Y_2	ՆՎ	<	ՆՎ	<	ՆՎ	<																						
1		50	100	-	1	Įur	ցիկլոնների խումբ ԵԱ-5-8			90																							
2		120	110	-	-	Įur	ցիկլոնների խումբ ԵԱ-5-8			90																							
3		50	150	-	-	_																											
4		50	30	130	110	խոնա	խոնավացում																										

3-րդ աղյուսակի շարունակությունը

Աղբյու- րի	Նյութի անվանումը	Աղւ		ՄԹԱ հաս- նելու					
կարգա-			ՆՎ		く (U@U)			տարին	
թիվը		գ/վրկ	մգ/մ³	տ/տարի	գ/վրկ	մգ/մ³	տ/տարի		
	Փոշի անօրգանական								
1	(SiO ₂ 20 -70%)	0.700	50.65	6.0	0.700	50.65	6.0		
1	Ածխածնի օքսիդ	0.435	0.315	3.756	0.435	0.315	3.756	2025	
	Ազոտի օքսիդներ	0.149	10.78	1.284	0.149	10.78	1.284		
	Ածխաջրածիններ	0.174	12.60	1.500	0.174	12.60	1.500		
	Փոշի անօրգանական								
	(SiO ₂ 20 -70%)	0.580	46.03	5.0	0.580	46.03	5.0	2025	
2	Ածխածնի օքսիդ	0.380	31.25	3.287	0.380	31.25	3.287		
	Uզոտի օքսիդներ	0.130	10.69	1.124	0.130	10.69	1.124		
	Ածխաջրածիններ	0.150	12.33	1.300	0.150	12.33	1.300		
_	Ածխածնի օքսիդ	0.054	37.50	0.470	0.054	37.50	0.470	2025	
3	Uզոտի օքսիդներ	0.019	13.19	0.161	0.019	13.19	0.161		
	Ածխաջրածիններ	0.081	56.25	0.700	0.081	56.25	0.700		
4	4 Փոշի անօրգանական (SiO ₂ 20 -70%)		0.067	17.0	1.350	0.067	17.0	2025	

ՆՎ՝ ներկա վիձակ, Հ՝ հեռանկար

Կատարվել է մթնոլորտն աղտոտող նյութերի աղբյուրների գույքագրում։ Ըստ գույքագրման արդյունքի ՍԹԱ հաշվարկի ելակետային տվյալները կազմվել և հաշվարկվել են ГОСТ 17.2.3.02 - 2014 - ին համապատասխան և բերված են 3 աղյուսակում։

Հաշվարկները կատարվել են «Տարբեր արտադրությունների կողմից մթնոլորտն աղտոտող նյութերի արտանետումների հաշվարկի մեթոդիկան» ժողովածուի հիման վրա։

Նստեցման անչափելի գործակիցն ընդունվել է` գազանման վնասակար նյութերի և մանր դիսպերսության փոշու համար, որոնց նստեցման կարգավորված արագությունը չի գերազանցում 3-5 սմ/վրկ` 1, խոշոր դիսպերսության փոշու համար մաքրման բացակայության դեպքում` 3, մաքրման դեպքում` 2:

Վանաձոր քաղաքի ֆոնային աղտոտվածության տվյալները վերցվել են ՀՀ Շրջակա միջավայրի նախարարության կայք էջից` ՀՀ որոշ բնակավայրերի մթնոլորտային օդն աղտոտող նյութերի ֆոնային կոնցենտրացիաների / հնգամյա միջին/ըստ բնակչության թվաքանակի կատարված հաշվարկի` փոշի - 0.164 մգ/մ³ (փոշու ֆոնի տվյալները ներկայացված է 0.5մգ/մ³ ՍԹԿ ունեցող չտարբերակված փոշիների` այսինքն կախված մասնիկների համար), ազոտի երկօքսիդ - 0.006 մգ/մ³, ածխածնի օքսիդ - 1.3 մգ/մ³, ծծմբային անհիդրիդ - 0.006 մգ/մ³:

7. YUUUUYUP U3NHABPH UPSUUBSNHUUBPH BPUUU KUCYUPYD

Մթնոլորտում վնասակար նյութերի ցրվածության հաշվարկները կատարելու համար Ճշգրտված և ուղղված տվյալների հիման վրա կազմվել են ՍԹԱ հաշվարկի ելակետային տվյալները։

Հաշվարկները կատարվել են «Տարբեր արտադրությունների կողմից մթնոլորտըն աղտոտող նյութերի արտանետումների հաշվարկի մեթոդիկան»ժողովածուի հիման վրա։

Վնասակար նյութերով մթնոլորտի աղտոտվածության հաշվարկը կատարվել է «Էկո ցենտր» մեքենայական ծրագրով։

Գետնամերձ խտությունների բաշխման որոշումը կատարվել է 100մ քայլով։

ՕԴԵՐԵՎՈͰԹԱԲԱՆԱԿԱՆ ԲՆՈͰԹԱԳԻՐԸ ԵՎ ԳՈՐԾԱԿԻՑՆԵՐԸ, ՈՐՈՆՔ ԲՆՈՐՈՇՈͰՄ ԵՆ ԲՆԱԿԵԼԻ ՏԱՐԱԾՔԻ ՄԹՆՈԼՈՐՏՈͰՄ ՎՆԱՍԱԿԱՐ ՆՅՈͰԹԵՐԻ ՑՐՄԱՆ ՊԱՅՄԱՆՆԵՐԸ

Ցրման պայմանները որոշող օդերևութաբանական բնութագրերը և գործակիցները ներկայացված են ստորև բերված աղյուսակում։ Սահմանային թույլատրելի առավելագույն միանվագ կոնցենտրացիաները վերցված են ՀՀ կառավարության 2006թ. փետրվարի 2-ի N160-Ն որոշմամբ հաստատված ցանկից։

Աղյուսակ 4

ՔՆՈͰԹԱԳՐԵՐԻ ԱՆՎԱՆՈͰՄԸ	######################################
Մթնոլորտի ստրատիֆիկացիայի գործակիցը, A	200
Տեղանքի ռելեֆի գործակիցը (հաշվարկված համաձայն կողմնորոշչի)	1.25
Տարվա ամենաշոգ ամսվա միջին առավելագույն ջերմաստիձանը T ºC	23.9
Միջին տարեկան քամիների վարդը 8 ուղղություններով (ռումբ %)	
Հյուսիս	2
Հյուսիս-արևելք	5
Արևելք	14
Հարավ-արևելք	21
Հարավ	28
Հարավ-արևմուտք	11
Արևմուտք	8
Հյուսիս-արևմուտք	11
Քամու բազմամյա միջին արագությունը (մ/վրկ), որը հնարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)	3.4մ/վրկ
Քամու բազմամյա միջին առավելագույն արագությունը (մ/վրկ), որը ինարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)	23մ/վրկ

8. ՎՆԱՍԱԿԱՐ ՆՅՈͰԹԵՐԻ ՑՐՄԱՆ \prec ԱՇՎԱՐԿԻ \prec ԱԿԻՐ Δ ԱՐԴՅՈͰՆՔՆԵՐԸ

Մթնոլորտում վնասակար նյութերի արտանետումների ցրման հաշվարկի արդյունքները ներկա վիձակի և հեռանկարի համար ցույց են տալիս, որ սահմանային թույլատրելի խտության գերազանցում չի դիտվում ոչ մի նյութի համար, հաշվի առնելով նաև ֆոնային աղտոտվածության արդյունքները, այդ իսկ պատձառով վնասակար նյութերի համար սահմանված նորմատիվները առաջարկվում է ընդունել որպես ՍԹԱ։

Վնասակար նյութերի համար սահմանված նորմատիվների առաջարկները ներկայացված են աղյուսակ 6-ում։

Հաշվարկների վերլուծության հիման վրա առաջարկվում է բոլոր նյութերի համար նախատեսված արտանետումները ընդունել որպես սահմանային թույլատրելի տես աղյուսակ 5-ում։

Համաձայն վնասակար նյութերի ցրման հաշվարկի մակերսն ընդգրկում է մինչև 0.05ՍԹԽ աղտոտվածությամբ տարածքները, իսկ ցանցի քայլը թույլ է տալիս գնահատելու աղտոտվածությունն կազմակերպության տարածքի եզրին, սանիտարապաշտպանական gnunnı սահմանի եզրին ամենամոտ բնակելի տարածքներում։ Տես. «Էկո ցենտր» համակարգչային ծրագրի հաշվարկը։

Ձեռնարկության արտանետումները չեն գերազանցում այդ վնասակար նյութերի համար սահմանված չափանիշները, այդ պատՃառով արտանետումների քանակն իջեցնող միջոցառումների պլան չի նախատեսվում։

9. บลบกเการห นบชบนบชช นารกรกหบบชา นกนฺณชนฺชบกา นาคลกหาบชาห ลกหมฺนค

«Էկո ցենտր» հաշվարկից երևում է որ ձեռնարկության արտանետումները տվյալ տեղանքի ֆոնային աղտոտվածության հետ չեն գերազանցում այդ վնասակար նյութերի համար սահմանված չափանիշները, այդ պատձառով արտանետումների քանակն իջեցնող միջոցառումների պլան չի նախատեսվում։ Աղտոտող նյութերի գետնամերձ խտությունները չեն գերազանցում համապատասխան նյութերի ՍԹԽ։

«Էկո ցենտր» հաշվարկի բացատագրում և աղյուսակներում երևում են առավելագույն գետնամերձ խտությունը առանց ֆոնի և ֆոնով։

Հաշվարկների արդյունքները աղյուսակների տեսքով բերված են հավելվածների մասում։ Ինչպես երևում է հաշվարկների արդյունքներից փոշու գետնամերձ կոնցենտրացիաները գտնվում են բնակավայրի համար սահմանված ՍԹԿ սահմաններում։

Առավելագույն գետնամերծ կոնցենտրացիաներ

Աղյուսակ 5

	<i></i> Սյութի անվանումը	<i>Առավելագույն գետ</i> ՄԹԿ	մամերծ	<i>կոնցենտրացիաները</i> մասնաբաժնով			
		Արտադրահրս	սպարակի եզրին	Ամենամոտ բնաԼ	յավայրի եզրին		
		Ֆոնային կոնցենտրա- ցիաի հետ միասին	Առանց ֆոնային կոնցենտրացիաի	Ֆոնային Կոնցենտրա-	Առանց ֆոնային կոնցենտրացիաի		
				ցիաի հետ միասին			
1	Фոշի անօրգանական (SiO ₂ 20 -70%)	-	Cs= 0.41UԹԿ 0.123น์q/น์ ³ X=-32.74น์, Y=108.61น์	-	Cs= 0.39UԹԿ 0.117น์q/น์ ³ X=-32.74น์, Y=108.61น์		
2	Ածխածնի օքսիդ	Cs= 0,00942<0,05	Cs= 0,00942<0,05	Cs= 0,00942<0,05	Cs= 0,00942<0,05		
3	Ազոտի օքսիդներ (երկօքսիդի հաշվարկով)	Cs= 0.052UԹԿ 0.010 น์q/น์ ³ X=81.92,Y=38.98น์	Cs= 0.02UԹԿ 0.004 น์q/น์ ³ X=81.92,Y=38.98น์	Cs= 0.066UԹԿ 0.013 บัq/บั ³ X= 112.2บั Y=-164.9บั	Cs= 0.036UԹԿ 0.0072 น์q/น์ ³ X= 112.2น์ Y=-164.9น์		
4	Ածխաջրածիններ	-	Cs= 0,03826<0,05.	-	Cs= 0,03826<0,05.		

NN ը/կ	Միջոցառման անվանումը Լ աղտոտման աղբյուրի համարը	ւ ման		(նյո ւրտանեւ	յար նյութի ութեր) տումը մինչև յառումը	(նյու արտան իրական	Վնասակար նյութի (նյութեր) արտանետումը իրականացնելուց հետո	
	. =			գ/վրկ	տ/տարի	գ/վրկ	տ/տարի	
		ՓՈՇԻ ԱՆՕ	ՐԳԱՆ	น่นบั (SiO ₂ 20 -70)%)		
1	1	2025	0.7	700	6.0	0.700	6.0	
2	2	2025	0.5	580	5.0	0.580	5.0	
3	4	2025	1.3	350	17.0	1.350	17.0	
	Ընդամենը	2025	2.0	630	28.0	2.630	28.0	
		u.	DIUUC	ԾՆԻ ՕՔԼ	JԻԴ			
1	1	2025	0.	435	3.756	0.435	3.756	
2	2	2025	0.	380	3.287	0.380	3.287	
3	3	2025	0.	054	0.470	0.054	0.470	
	Ընդամենը	2025	0.	869	7.513	0.869	7.513	
ш	<u> </u>	RNSh O£Uhr	ԴՆԵՐ	(երկօլ	շսիդի հաշկ	լարկով)		
1	1	2025	0.	149	1.284	0.149	1.284	
2	2	2025	0.	130	1.124	0.130	1.124	
3	3	2025	0.	019	0.161	0.019	0.161	
	Ընդամենը	2025	0	298	2.569	0.298	2.569	
		u	วุเกศฮ	ՐԱԾԻՆ	ՆԵՐ		<u> </u>	
1	1	2025	0.1	74	1.500	0.134	1.500	
2	2	2025	0.1		1.300	0.150	1.300	
3	3	2025	0.0		0.700	0.081	0.700	
	Ընդամենը	2025	0.4	105	3.500	0.405	3.500	

Քանի որ արտանետումները չեն առաջացնում գերնորմատիվային աղտոտվածություն, չի նախատեսվում արտանետումների նվազեցմանն ուղղված միջոցառումներ, աղյուսակ 5-ը լրացվում է համաձայն փաստացի չափաքանակների, որոնք առաջարկվում են որպես ՍԹԱ նորմատիվներ։

11. นารกรกา บอกเดษก บิตับกเการ นารนับธริธิเกา «กิบบีนา» บำติ *ปั่นนั้นเด็กก เกิ*ธิกูเนชั้นเน วันอนุยนบันปริบาน เกิรนับธริบันบิ เดิกเฮเริ่ปกาเอิ

ԱՂՅՈՒՍԱԿ 6.

Աղտոտող նյութը	Ընդիանուր արտանետումները				
	գ/վրկ	տ/տարի			
Փոշի անօրգանական (SiO ₂ 20 -70%)	2.630	28.0			
Ածխածնի օքսիդ	0.869	7.513			
Ազոտի օքսիդներ (երկօքսիդի հաշվարկով)	0.298	2.569			
Ածխաջրածիններ	0.405	3.500			

Անբարենպաստ եղանակի դեպքում արտանետումների կարգավորման միջոցառումները կրում են կազմակերպչական-տեխնիկական բնույթ և գործնականորեն ընդգրկում են վնասակար նյութերի արտանետումների բոլոր աղբյուրները։

- 1. Թույլ չտալ սարքավորման գերբեռնված աշխատանք
- 2. Խստորեն հետևել տեխնոլոգիայի ընթացակարգին
- 3. Չբեռնավորել և չդատարկել լուծիչներ և հեշտ բոցավառվող բռնկվող նյութեր
- 4. Սահմանափակել վառելիքի մատակարարումը
- 5. Սահմանափակել փոշու արտանետումը
- 6. Վնասակար նյութերի արտանետումների քանակի մեծացման դեպքում հարկ է անմիջապես դանդաղեցնել կամ ժամանակավորապես դադարեցնել տվյալ սարքավորման աշխատանքը։

Քանի որ ՍԹԱ կատարման համար պատասխանատու է ձեռնարկությունը, արտանետումներին հետևում և ստուգում է բնության պահպանության համար պատասխանատու անձը։

Վնասակար նյութերի արտանետումների քանակը որոշվում է այդ վնասակար նյութերի խտությունների և գազերի օդային խառնուրդների ծավալների ուղղակի չափման մեթոդներով։ Ուրղակի չափման մեթոդների անհնարինության դեպքում թույլատրվում է տեսական հաշվարկի մեթոդը։ Տվյալ դեպքում օգտագործվել է տեսական հաշվարկի մեթոդը։

Անբարենպաստ կլիմայական պայմանների ժամանակ, բնակչության առողջության համար վնասաբեր մթնոլորտի աղտոտման ընթացքում ձեռնարկությունը պարտավոր է վնասակար նյութերի արտանետումները իջեցնել ընդհուպ մինչև աշխատանքի դադարեցումը։

Եթե վթարի արդյունքում ՍԹԱ -ի նորմատիվը գերազանցվում է, ձեռնարկությունը պարտավոր է այդ մասին հայտնել մթնոլորտի պահպանությունը վերահսկող մարմնին և անհապաղ միջոցներ ձեռնարկել վնասակար նյութերի արտանետումները սահմանափակելու ուղղությամբ, ինչպես նաև «ՀՀ ԱՆ Առողջապահական տեսչական մարմին» տեղեկատվություն հաղորդել վթարի և ձեռնարկված միջոցառումների մասին։

«ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամասի* ՕՊՕ-ի ՀԱՇՎԱՐԿԸ

Սահմանային թույլատրելի արտանետումների նորմատիվները սահմանվում են այն արտանետման աղբյուրների կամ խմբերի դրանց համար, որոնց արտանետումների առավելագույն նախագծային ցուցանիշների իիման վրա հաշվարկված օդի պահանջվող օգտագործումը մեկ տարում կազմում է երկու հարյուր միլիոնից մինչև երկու միլիարդ խորանարդ մետր, արտանետումների սահմանային չափաքանակներ են դրանց գործունեության արդյունքում առաջացած փաստացի արտանետումները:

Այն կազմակերպությունները, որոնք ունեն մթնոլորտային արտանետումների անշարժ աղբյուրներ և նրանց նախագծային առավելագույն արտանետումները պետք է բավարարեն հետևյալ պայմանը`

ՕՊՕ տարեկան-ը օդի պահանջվող օգտագործումն է` տարեկան կտրվածքով,

- Աi-ն i-րդ նյութի տարեկան առավելագույն արտանետումն է` ըստ Հայաստանի Հանրապետության բնապահպանության նախարարության կողմից հաստատված սահմանային թույլատրելի արտանետումների նորմատիվների նախագծի կամ տեխնոլոգիական ռեզլամենտի` մգ/տարի,
- ՍԹԿi-ն i-րդ նյութի միջին օրական սահմանային թույլատրելի խտությունն է` մգ/խոր. մ: ԱՂՏՈՏՈՂ (ՎՆԱՍԱԿԱՐ) ՆՅՈ**Ի**ԹԵՐԻ ԱՐՏԱՆԵՏՈՒՄՆԵՐ

Նյութի անվանումը	Արտանետման քանակը, տոն/տարի	ՕՊՕ մլրդ խոր.մ/տարի
Փոշի անօրգանական (SiO ₂20 -70%)	28.0	(28.0 x 10 ⁹) : 0.1= 280.0
Ածխածնի օքսիդ	7.513	$(7.513 \times 10^9) : 3 = 2.504$
Ազոտի օքսիդներ (երկօքսիդի հաշվարկով)	2.569	(2.569 x 10 ⁹) : 0.04 = 64.225
Ածխաջրածիններ	3.500	(3.5 x 10 ⁹) : 1= 3.500
Ընդամենը		350.229

ՕՊՕ-ն գերազանցում է 2 մլրդ/մ³ շեմը (**350.229**մլրդ մ³ //տարի), ապա ընկերությունը պետք է մշակի ահմանային թույլատրելի արտանետումների նորմատիվներ` արտանետման աղբյուրների կամ դրանց խմբերի համար։

«ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամասի* գործունեությունից արտանետումների հետևանքով շրջակա միջավայրին հասցվելիք <u>Վնասի մեծության հաշվարկ</u>

Համաձայն «Մթնոլորտային օդի պահպանության մասին» օրենքի, բնությանը հասցված վնասի հատուցման հաշվարկը կատարվում է համաձայն «Մթնոլորտի վրա տնտեսական գործունեության հետևանքով առաջացած ազդեցության գնահատման կարգի», հաստատված 21.01.2005թ. թիվ N 91-Ն ՀՀ Կառավարության որոշմամբ,

«ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամասի* կողմից հասցված վնասի մեծության հաշվարկը կատարվում է հետևյալ բանաձևով`

$$U2 = Cq \bullet \Phi g \bullet \Sigma P_1 \bullet V_1$$

որտեղ`

Շգ - աղտոտող աղբյուրի շրջապատի գործակիցն է` - 4

Фg - փոխանցման գործակիցն է` - 1000 դրամ

Վլ– նյութի համեմատական վնասակարության մեծությունն է

Ք₁ — տվյալ նյութի արտանետումների քանակի հետ կապված գործակիցն է, որը հաշվում են հետևյալ բանաձևով`

$$\varrho_1 = q \bullet / 3Su_1 - 2U\partial U /$$

որտեղ`

գ - անշարժ աղբյուրների համար – 1

Տա - տվյալ նյութի արտանետման քանակն է

«ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամասի* արտանետումներով տնտեսությանը հասցված վնասի հաշվարկը բերված է աղյուսակում

Նյութի անվանումը	Ք ₁ տոննա	Çđ	Фд դրամ	U₁	Ա դրամ
Фոշի անօրգանական (SiO ₂ 20 -70%)	28.0	4	1000	10	1120000
Ածխածնի օքսիդ	7.513	4	1000	1	30052
Ազոտի օքսիդներ	2.569	4	1000	12,5	128450
Ածխաջրածիններ	3.500	4	1000	3	42000
Ընդամենը			,		1320502

ԴԵԼԻԵՖԻ ԳՈՐԾԱԿՑԻ ՀԱՇՎԱՐԿԸ «ՈՍՄԱՐ» ՍՊԸ *Վանաձոր տեղամաս*

Ոելիեֆի գործակիցը որոշվում է`

H= 18մ - արտանետման ամենաբարձր աղբյուրը

H_o = 100մ - տեղանքի բարձրությունը

X_o= 2200մ -արգելքի կենտրոնից մինչ ձեռնարկություն ընկած

իեռավորությունը

φ₁- արգելքի եզրի կիսաքայլը

a_o=2000

Ոելիեֆի գործակիցը որոշվում է`

$$\eta = 1 + \phi_1 (\eta_m - 1)$$

Գտնել ո₁ և արժեքները

 $n_1 = h$: $H_0 = 18$: 100 = 0.18 $n_1 < 0.5$

 $n_2 = a_0$: $H_0 = 1500$: 100 = 15

 $n_2 = 15$ դեպքում համաձայն աղյուսակի գտնում ենք` $\eta = 1,5$

 ϕ_1 –ը որոշվում է X_0 / a_0 հարաբերությամբ

$$X_0 / a_0 = 2200 : 1500 = 1,5$$

դիտում ենք գրաֆիկը և գտնում φ1 արժեքը`

$$\varphi_1 = 0.5$$

տեղադրելով բանաձևի մեջ՝

$$\eta = 1 + 0.50 (1.5 - 1) = 1.25$$

ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ՇՐՋԱԿԱ ՄԻՋԱՎԱՅՐԻ ՆԱԽԱՐԱՐՈՒԹՅԱՆ «ՀԻԴՐՈՕԴԵՐԵՎՈՒԹԱԲԱՆՈՒԹՅԱՆ ԵՎ ՄՈՆԻԹՈՐԻՆԳԻ ԿԵՆՏՐՈՆ» ՊՈԱԿ ՏՆՕՐԵՆ

«<u>29</u>» 06 2020 р.

Nº 08/LW - 125

«Էկոբարիք-աուդիտ» ՍՊԸ տնօրեն պարոն Ա.Միրզախանյանին

Հարգելի պարոն Միրզախանյան

Ի պատասխան Ձեր 2020 թվականի հունիսի 23-ի թիվ 06 գրության տրամադրում եմ բազմամյա կլիմայական հարաչափերն ըստ Շրջակա միջավայրի նախարարության «Հիդրոօդերևութաբանության և մոնիթորինգի կենտրոն» ՊՈԱԿ-ի Վանաձոր օդերևութաբանական կայանի տվյալների.

Մթնոլորտի ստրատիֆիկացիայի գործակիցը	200
Տարվա ամենաշոգ ամսվա միջին առավելագույն ջերմաստիճանը T°C	23.9
Քամու բազմամյա միջին արագությունը (մ/վրկ), որը հնարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)	3.4
Քամու բազմամյա միջին առավելագույն արագությունը (մ/վրկ), որը ինարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)	23

Քամու ուղղությունների և անդորրի կրկնելիությունը (%)

<u< th=""><th>ՀսԱրլ</th><th>Արլ</th><th>ՀվԱրլ</th><th><પ</th><th>ՀվԱրմ</th><th>Արմ</th><th>ՀսԱրմ</th><th>Անդորը</th></u<>	ՀսԱրլ	Արլ	ՀվԱրլ	<પ	ՀվԱրմ	Արմ	ՀսԱրմ	Անդորը
2	5	14	21	28	11	8	11	30

L. Thypus

Հարգանքով՝ Տնօրենի ժ/պ

Լ. Ազիզյան

Մպասարկման և մարկեպինգի բաժին Նորա Հակորյան - 012-31-79-13

0025, ք.Երևան, Չարենցի 46 Հեռ.' (+374 10) 55 47 32, Էլ.փոստ՝ hmc@env.am

ՀԱՑԱՍՏԱՆԻ ՀԱՆՐԱՊԵՈՒՈԹԵՐԻՆ ԱՐԴԱՐԱԿԱՐԱՆԵՆ ՄԵՐԱՆԵՐԱՐԱՐՈՒԹՅՈՒՆ ԴՐԱՎԱԲԱՆԱԿԱՆ ԱՆՋԱՆՑ ՊԵՏԱԿԱՆ ՈԵԳԵՐ

ՊԵՏԱԿԱՆ ՄԻԱՄՆԱԿԱՆ ԳՐԱՆՑԱՄԱՏՅԱՆԻՑ ՔԱՂՎԱԾՔ ատ 2023-11-08

«ՈՍՄԱՐ» Սահմանափակ պատասխանատվությամբ ընկերություն (ՍՊԸ)

9nubgdat hudan 18.110.00511

Հիմնադրման տարի 2002

Apulogdiub udworki 2002-04-04

Գործունեության ժամկետ։ Անժամկետ

Իրավարանական անձի լումարման գործընթացում գտնվելու կամ Կարգավիճակ՝ գործուննության (գորության) դադարման մասին պետական միասնական գրանցամաս յանում տեղեկություններ գրառված չեն։

Իրավաբանական անձի ծածկագիր (2ԿԴ) 39022390

Հարգ վճարողի հաշվառման համար (ՀՎՀՀ) 09208107

Արցիալական վճարների պարտավորությունների անձնական Խաշվի քաբտի համար (Ապահովադրի 32/105/11 ծածկացիր)

ել փուսո -

Huijg -

Գտեվելու վայրը

Հասցե երևանյան խ6 / Շ / 17,17/1 ԳՈՐԻՍ 3202 ԳՈՐԻՍ ՍՅՈՒՆԻՔ ՀԱՅԱՍՏԱՆ

<anulunu -</p>

Դործադիր մարմաի դեկավար

Պաշտոն Shopbb

Winds Uggalands AUPH4 CULAPBUT UPSANCH

Uhölmignughli indjurldin AL0436148 2023-09-26 001

Cuangh 5 4. / 22 w. นาโมนอกก 3615 ชาช4หม 4นอกร อกก ชนอนบรณ

048น4ทิกอินนิฮ 4กนินบิทิเคริกาบ

- 1. ГОСТ 17.2. 3. 02 78 "Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями".
- 2. Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами. Ленинград Гидрометеоиздат -1986г.
- 3. Временная инструкция о порядке проведения работ по установлению нормативов допустимых выбросов вредных веществ в атмосферу для отдельно нормируемых предприятий промышленности, ОНД-86.
- 4. . ՀՀ կառավարության 04.01. 2024թ. «Մթնոլորտային օդն աղտոտող (վնասակար) նյութերի սահմանային թույլատրելի արտանետումների նորմատիվների նախագծերի մշակման և սահմանային թույլատրելի արտանետումների նորմատիվների նախագիծ ներկայացված իրավաբանական անձանց և ձեռնարկատիրական գործունեությամբ զբաղվող ֆիզիկական անձանց արտանետման թույլտվությունների տրամադրման կամ մերժման կամ ուժը կորցրած Ճանաչելու մասին կարգը հաստատելու մասին» N 32 -Ն որոշումը
- 5. ՀՀ Կառավարության 21.01.2005թ. թիվ N 91-Ն որոշմամը. «Մթնոլորտի վրա տնտեսական գործունեության հետևանքով առաջացած ազդեցության գնահատման կարգի»։

ОТЧЕТ

Расчёт загрязнения атмосферы унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр» Объект: «Ոսմար» ՍՊԸ Վանաձորի տեղամաս

Расчёт загрязнения атмосферы выполнен в соответствии с ОНД-86 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий», с использованием унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр».

1.1 Исходные данные для проведения расчета загрязнения атмосферы

порог целесообразности по вкладу источников выброса: **0,05**; расчетный год **2025**.

Метеорологические характеристики и коэффициенты:

коэффициент, зависящий от температурной стратификации атмосферы: 200;

средняя температура наружного воздуха, °C: **23,9**; коэффициент рельефа: **1,25**.

Параметры перебора ветров:

направление, метео °: 0 - 360 (шаг 1); скорость, м/с: 0,5 - 23 (шаг 0,1).

Основная система координат - правая с ориентацией оси ОУ на Север.

Количество загрязняющих веществ в расчете - 4 (в том числе твердых - 1; жидких и газообразных - 3), групп суммации - 1. Перечень и коды веществ и групп суммации, участвующих в расчёте загрязнения атмосферы, с указанием класса опасности и предельно-допустимой концентрации (ПДК) либо ориентировочного безопасного уровня воздействия (ОБУВ), приведен в таблице 1.1.1.

Таблица № 1.1.1 - Перечень загрязняющих веществ и групп суммации

	Загрязняющее вещество	Класс	Предел	ьно-допустима	я концентраци	я, мг/м³
иол	Halmonapanno	опасност	максимально	средне-	ОБУВ	используется
код	наименование	И	-разовая	суточная	ОВУВ	в расчете
1	2	3	4	5	6	7
301	Азота диоксид	3	0,2	0,04	-	0,2
337	Углерод оксид	4	5	3	-	5
2754	Алканы С12-19	4	1	-	-	1
2908	Пыль неорганическая: SiO2 20-70%	3	0,3	0,1	-	0,3

Сведения о концентрациях загрязняющих веществ на фоновых постах, используемых в расчете загрязнения атмосферы, приведены в таблице 1.1.2.

Таблица № 1.1.2 - Сведения о концентрациях загрязняющих веществ на фоновых постах

						Конц	центрация, л	лг/м³		
Наимонованио	Координа	аты поста	3a	грязняющее вещество	скорость ветра, м/с					
Наименование							3 –	u*		
фонового поста	V	V			0 – 2	направление ветра				
	^	r	Ү код наименование			С	В	Ю	3	
1	2	3	4	5	6	7	8	9	10	
Расчетная площа	адка 1(СК Основна	я СК)								
1	0	0	337	Углерод оксид	1,3	1,3	1,3	1,3	1,3	
			301	Азота диоксид	0,006	0,006	0,006	0,006	0,006	

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.1.3.

Таблица № 1.1.3 - Параметры расчетных точек

		Координаты		T
Наименование	Х	Y	высота, м	- Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	0,9	24,8	2	Точка в промзоне
2	30,6	36,3	2	Точка в промзоне
3	41,7	12,5	2	Точка в промзоне
4	11,6	0,6	2	Точка в промзоне
5	-32,74	108,61	2	Точка на границе ОС33
6	83,92	102,88	2	Точка на границе ОС33
7	120,27	-16,96	2	Точка на границе ОС33
8	-37,17	-69,05	2	Точка на границе ОСЗЗ
9	-81,92	38,98	2	Точка на границе ОС33
10	-129,2	-96,1	2	Точка в жилой зоне
11	-177,9	-42,1	2	Точка в жилой зоне
12	-196,9	-4	2	Точка в жилой зоне
13	-112,2	-164,9	2	Точка в жилой зоне
14	-33,9	-190,3	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.1.4.

Таблица № 1.1.4 - Параметры расчетных площадок

Ī			Координаты ср	единной линии		Ширина,	Рисота	Шаг	Шаг С33,
	Наименование	точі	ка 1	точі		Высота, м	сетки, м	-	
		X ₁ Y ₁ X ₂ Y ₂		Y ₂	М	IVI	CETKN, M	141	
	1	2	3	4	5	6	7	8	9
ſ	1	-560	10,41	577,64	10,41	878,959	2	100	-

Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам, приведена в таблице 1.1.5.

Таблица № 1.1.5 - Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам

Nº И3A	Учет в расчет е	Исключе ние из фона	№ режим а ИЗА		вия режима ётном году окончание	Рабочий график	Принадлежность к группе источников, работающих не одновременно
1	2	3	4	5	6	7	8
Объект	г:	1. Объе	кт №1 «ſ	ገսմար» ՍՊԸ	Վանաձորի ւ	ոեղամաս	
Площа	дка:	1. Плош	адка №:	1			
Цех:		1. Цех N	91				
1	+	+	-	01 January	31	-	-
					December		
2	+	+	-	01 January	31	-	-
					December		
3	+	+	-	01 January	31	-	-
					December		
4	+	+	-	01 January	31	-	-
					December		

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.1.6.

Таблица № 1.1.6 - Параметры источников загрязнения атмосферы

				Пара	аметры ГВО	0	Ко	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	Ę	Высо	Диаме	скорость,	объем.	темп.,	X_1	Y ₁	идиш	К	скор.		масса	ĸ		до ма-
ИЗА	ī	та, м	тр, м	м/с	м ³ /с	°C ′	Υ.	V.	на, м	рел	ветра,	код	выброса, г/с	oc.	д.ПДК	ксиму-
				W/C	W /C	C	Λ2	12	ma, m		m/c		выороса, т/с	oc.	A	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Объект: 1. Объект №1 «Ոսմար» ՍՊԸ Վանաձորի տեղամաս

Продолжение таблицы 1.1.6

				Пар	аметры ГВО	0	Ко	ординаты			Опас.	Загря	вняющее веще	ство	Mayıs	Расст.
Nº	Тип	Высо	Диаме	скорость,	объем,	темп.,	X_1	Y_1	шири	К	скор.		масса	К	Макс. конц-я,	до ма-
ИЗА	_	та, м	тр, м	m/c	m³/c	°C	X_2	Y_2	на, м	рел	ветра, м/с	код	выброса, г/с	oc.	д.ПДК	ксиму- ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Площ Цех:	адк	a:	1. Плоц 1. Цех I	цадка №1 №1												
1	1	18	0,8	27,5	13,823	140	0	0	-	1,25	4,301	2908	0,7	3	0,24	183,23
												337	0,435	1	0,003	366,46
												301	0,149	1	0,025	366,46
												2754	0,174	1	0,006	366,46
2	1	18	0,8	24,2	12,164	130	0	0	-	1,25	3,897	2908	0,58	3	0,22	172,77
												337	0,38	1	0,003	345,54
												301	0,13	1	0,025	345,54
												2754	0,15	1	0,006	345,54
3	1	10	0,3	20,4	1,442	90	0	0	-	1,25	1,378	337	0,054	1	0,004	119,09
												301	0,019	1	0,031	119,09
												2754	0,081	1	0,027	119,09
4	4	8	80	4	20106,2	23,9	31.3	15.6	10,1	1,25	114,4	2908	1,35	3	0,105	461,51
							84.8	87.7								

1.2 Расчет загрязнения по веществу «301. Азота диоксид»

Полное наименование вещества с кодом 301 – Азота диоксид (Азот (IV) оксид). Максимально разовая предельно допустимая концентрация составляет 0,2 мг/м³, класс опасности 3.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 3 (в том числе: организованных - 3, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 1; 11-20 M - 2; 21-29 M - HeT; 30-50 M - HeT; 51-100 M - HeT; более 100 M - HeT.

Суммарный выброс, учтенных в расчёте источников, составляет 0,298 грамм в секунду и 0 тонн в год.

В расчёте учитывались фоновые концентрации, заданные на 1 ПНЗА (пост наблюдения за загрязнением атмосферы).

Расчётных точек – 14, расчётных площадок - 1 (узлов расчётной сетки - 108).

Максимальная расчётная приземная концентрация (См), выраженная в долях ПДК населенных мест, по расчётной площадке № 1 составляет:

- на границе СЗЗ **0,052**, которая достигается в точке № 9 X=-81,92 Y=38,98, при направлении ветра 99° , скорости ветра 2,6 м/c, в том числе: фоновая концентрация 0,03 (фоновая концентрация до интерполяции 0,0154), вклад источников предприятия 0,036;
- в жилой зоне **0,066**, которая достигается в точке № 13 X=-112,2 Y=-164,9, при направлении ветра 36° , скорости ветра 3,8 м/c, в том числе: фоновая концентрация -0,03 (фоновая концентрация до интерполяции -0,00607), вклад источников предприятия 0,06.

Сведения о концентрациях загрязняющих веществ на фоновых постах, используемых в расчете загрязнения атмосферы, приведены в таблице 1.2.1.

Таблица № 1.2.1 - Сведения о концентрациях загрязняющих веществ на фоновых постах

						Конц	центрация, л	νι/w ₃				
	Координа	аты поста	3a	грязняющее вещество	скорость ветра, м/с							
Наименование							3 –	·u*				
фонового поста	Х	Y	код	наименование	0-2	направление ветра						
						С	В	Ю	3			
1	2	3	4	5	6	7	8	9	10			
Расчетная площа	Расчетная площадка 1(СК Основная СК)											
1	0	0	301	Азота диоксид	0,006	0,006	0,006	0,006	0,006			

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.2.2.

Таблица № 1.2.2 - Параметры расчетных точек

		Координаты	T	
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	0,9	24,8	2	Точка в промзоне
2	30,6	36,3	2	Точка в промзоне
3	41,7	12,5	2	Точка в промзоне
4	11,6	0,6	2	Точка в промзоне
5	-32,74	108,61	2	Точка на границе ОС33
6	83,92	102,88	2	Точка на границе ОС33
7	120,27	-16,96	2	Точка на границе ОС33
8	-37,17	-69,05	2	Точка на границе ОС33
9	-81,92	38,98	2	Точка на границе ОС33
10	-129,2	-96,1	2	Точка в жилой зоне
11	-177,9	-42,1	2	Точка в жилой зоне

Наимоноранио		Координаты	Тип точки	
Наименование	Χ	Υ	высота, м	ТИПТОЧКИ
1	2	3	4	5
12	-196,9	-4	2	Точка в жилой зоне
13	-112,2	-164,9	2	Точка в жилой зоне
14	-33,9	-190,3	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.2.3.

Таблица № 1.2.3 - Параметры расчетных площадок

Наименование		Координаты ср	Illiania	D. 10070	Шаг	IIIor C22		
	точі	ка 1	точ	Ширина,	l '		Шаг С33,	
	X ₁	Υ ₁	X ₂	Y ₂	M	M	сетки, м	M
1	2	3	4	5	6	7	8	9
1	-560	10,41	577,64	10,41	878,959	2	100	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.2.4.

Таблица № 1.2.4 - Параметры источников загрязнения атмосферы

			Параметр		аметры ГВС Координаты			Опас.	Загря	агрязняющее вещество		Макс.	Расст.				
Nº		CHODOCTI	скорость,	объем,	темп.,	X_1	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-		
ИЗА	F	та, м	тр, м	м/с	M ³ /C	°C	X_2	Y ₂	на, м	рел	рел	л ветра,	етра, код	выброса, г/с	oc.	д.ПДК	ксиму-
		, 0	/ 0	Ŭ	7.2	- 2	,		M/C			00.	т	ма, м			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
Объен	Объект: 1. Объект №1 «Ոսմար» ՍՊԸ Վանաձորի տեղամաս																
Площ	адк	a:	1. Плоц	цадка №1													
Цех:			1. Цех І	Nº1													
1	1	18	0,8	27,5	13,823	140	19.5	27.6	-	1,25	4,301	301	0,149	1	0,025	366,46	
2	1	18	0,8	24,2	12,164	130	27.5	13.7	-	1,25	3,897	301	0,13	1	0,025	345,54	
3	1	10	0,3	20,4	1,442	90	30.2	23.2	-	1,25	1,378	301	0,019	1	0,031	119,09	

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.2.5.

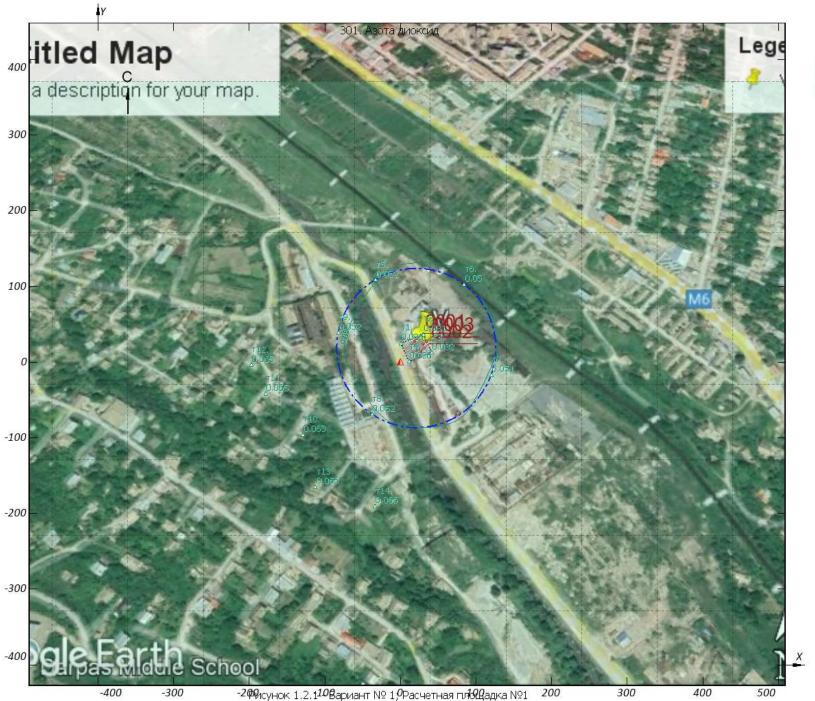
Таблица № 1.2.5 - Значения максимальных концентраций в расчетных точках

Наименование	Тип	Координаты			Расчетная концентрация		фон	Вклад	Ветер: направлен		Вклад	ИЗА	
		Х	Υ	высот	д.ПДК	MΓ/M³	Фон, д.ПДК	предпр иятия, д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%	
1	2	3	4	5	6	7	8	9	10	11	12	13	
Расчетная площад	Расчетная площадка 1(СК Основная СК)												
1	Пром.	0,9	24,8	2	0,036	0,0071	0,026	0,009	93 ← 1,3	1.1.3	0,009	25,8	
2	Пром.	30,6	36,3	2	0,031	0,0063	0,029	0,002	182 1,4	1.1.3	0,002	7,2	
3	Пром.	41,7	12,5	2	0,032	0,0064	0,029	0,003	313 🛭 1,4	1.1.3	0,003	9,9	
4	Пром.	11,6	0,6	2	0,035	0,0071	0,026	0,009	39 ∠ 1,3	1.1.3	0,009	25,7	
5	OC33	-32,74	108,61	2	0,052	0,0103	0,016	0,036	145 √ 2,6	1.1.3	0,023	44,4	
										1.1.2	0,008	15,4	
6	OC33	83,92	102,88	2	0,05	0,01	0,016	0,034	214 7 2,1	1.1.3	0,027	52,6	

		Координаты				Расчетная концентрация		Вклад предпр	Ветер: направлен		Вклад	ИЗА
Наименование	Тип	Х	Υ	высот а, м	д.ПДК	MΓ/M³	Фон <i>,</i> д.ПДК		ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
7	OC33	120,27	-16,96	2	0,051	0,0101	0,016	0,035	293 🛭 2,4	1.1.3	0,024	47,3
										1.1.1	0,005	10,8
8	OC33	-37,17	-69,05	2	0,052	0,0104	0,015	0,036	36 ∠ 2,5	1.1.3	0,025	47,5
										1.1.2	0,007	13,4
9	OC33	-81,92	38,98	2	0,052	0,0104	0,015	0,036	99 ← 2,6	1.1.3	0,024	45,6
										1.1.2	0,007	14,2
10	Жил.	-129,2	-96,1	2	0,063	0,0126	0,008	0,055	53 ∠ 3,6	1.1.2	0,019	31
										1.1.3	0,018	28,3
11	Жил.	-177,9	-42,1	2	0,065	0,013	0,007	0,058	73 ← 3,7	1.1.2	0,021	33,1
										1.1.1	0,019	30
12	Жил.	-196,9	-4	2	0,065	0,013	0,006	0,059	84 ← 3,7	1.1.2	0,022	34,2
										1.1.1	0,02	30,8
13	Жил.	-112,2	-164,9	2	0,066	0,0132	0,006	0,06	36 ∠ 3,8	1.1.2	0,022	33,4
										1.1.1	0,022	33,2
14	Жил.	-33,9	-190,3	2	0,066	0,013	0,006	0,059	16 ↓ 3,8	1.1.2	0,022	33,7
										1.1.1	0,021	31,7

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.2.6.

Таблица № 1.2.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1


	Коорд	цинаты	Расчетная ко	нцентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	Mr/M³	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
1	-560	-429.07	0,054	0,0108	0,014	0,04	52 ∠	4,9
2	-460	-429.07	0,056	0,0113	0,012	0,044	47 ∠	4,9
3	-360	-429.07	0,058	0,0117	0,011	0,047	40 ∠	4,5
4	-260	-429.07	0,06	0,012	0,01	0,05	32 ∠	4,2
5	-160	-429.07	0,062	0,0124	0,009	0,053	22 ↓	4,2
6	-60	-429.07	0,063	0,0126	0,008	0,055	11 ↓	4,2
7	40	-429.07	0,063	0,0127	0,008	0,056	358 ↓	4,2
8	140	-429.07	0,063	0,0126	0,008	0,055	346 ↓	4,2
9	240	-429.07	0,062	0,0123	0,009	0,053	334 🛚	4,2
10	340	-429.07	0,06	0,012	0,01	0,05	325 🛚	4,5
11	440	-429.07	0,058	0,0116	0,011	0,047	317 ⅓	4,6
12	540	-429.07	0,056	0,0111	0,013	0,043	311 🛚	5,1
13	-560	-329.07	0,056	0,0111	0,013	0,043	59 ∠	5,1
14	-460	-329.07	0,058	0,0116	0,011	0,047	54 ∠	4,6
15	-360	-329.07	0,061	0,0121	0,01	0,051	48 ∠	4,2
16	-260	-329.07	0,063	0,0126	0,008	0,055	39 ∠	4,1
17	-160	-329.07	0,065	0,013	0,007	0,058	28 ∠	4,1
18	-60	-329.07	0,067	0,0133	0,006	0,06	14 ↓	4
19	40	-329.07	0,067	0,0135	0,006	0,061	358 ↓	4
20	140	-329.07	0,067	0,0133	0,006	0,06	342 ↓	4,1
21	240	-329.07	0,065	0,013	0,007	0,058	328 🔽	4,1
22	340	-329.07	0,063	0,0125	0,008	0,054	318 🛚	4,2
23	440	-329.07	0,06	0,012	0,01	0,05	310 ↘	4,2
24	540	-329.07	0,058	0,0115	0,012	0,046	304 ⅓	4,6
25	-560	-229.07	0,057	0,0114	0,012	0,045	67 ∠	4,7
26	-460	-229.07	0,06	0,012	0,01	0,05	63 ∠	4,4
27	-360	-229.07	0,063	0,0126	0,008	0,055	57 ∠	4,2
28	-260	-229.07	0,065	0,013	0,006	0,059	49 ∠	4,1
29	-160	-229.07	0,068	0,0136	0,006	0,062	36 ∠	3,9
30	-60	-229.07	0,068	0,0137	0,006	0,062	19 ↓	3,8
31	40	-229.07	0,068	0,0137	0,006	0,062	357 ↓	3,8
32	140	-229.07	0,07	0,014	0,006	0,064	335 🛚	3,9
33	240	-229.07	0,069	0,0138	0,006	0,063	319 🛚	4
34	340	-229.07	0,065	0,013	0,007	0,058	308 7	4,1
35	440	-229.07	0,062	0,0124	0,009	0,054	301 ⅓	4,2
36	540	-229.07	0,059	0,0118	0,011	0,049	296 ∖⊿	4,4

	Коорд	динаты	Расчетная ко	онцентрация		Вклад	Be	тер
Nº	х	Υ	д.ПДК	Mr/M³	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
37	-560	-129.07	0,058	0,0116	0,011	0,047	76 ←	4,6
38	-460	-129.07	0,061	0,0122	0,009	0,052	73 ←	4,2
39	-360	-129.07	0,064	0,0129	0,007	0,057	69 ←	4,1
40	-260	-129.07	0,068	0,0136	0,006	0,062	62 ∠	4
41	-160	-129.07	0,066	0,0133	0,006	0,06	51 ∠	3,8
42	-60	-129.07	0,061	0,0122	0,009	0,051	30 ∠	3,6
43 44	40 140	-129.07	0,059	0,0118	0,011	0,048	355 ↓	3,4
45	240	-129.07 -129.07	0,064 0,07	0,0128 0,014	0,007 0,006	0,056 0,063	323 ڬ 305 ڬ	3,7 3,9
46	340	-129.07	0,067	0,014	0,006	0,061	295 🗓	4
47	440	-129.07	0,064	0,0127	0,008	0,056	290 →	4,1
48	540	-129.07	0,06	0,012	0,01	0,05	286 →	4,2
49	-560	-29.07	0,059	0,0117	0,011	0,048	85 ←	4,5
50	-460	-29.07	0,062	0,0124	0,009	0,053	84 ←	4,2
51	-360	-29.07	0,065	0,013	0,007	0,059	83 ←	4,1
52	-260	-29.07	0,068	0,0137	0,006	0,062	80 ←	3,9
53	-160	-29.07	0,063	0,0125	0,008	0,055	75 ←	3,6
54	-60	-29.07	0,05	0,01	0,016	0,034	60 ∠	2,1
55 56	40 140	-29.07 -29.07	0,043 0,055	0,0085	0,022	0,021 0,041	349 ↓ 294 ↘	1,4 3
57	240	-29.07	0,055	0,011 0,0132	0,013 0,006	0,041	283 →	3,8
58	340	-29.07	0,069	0,0132	0,006	0,063	283 → 279 →	3,8
59	440	-29.07	0,064	0,013	0,007	0,057	277 →	4,1
60	540	-29.07	0,061	0,0122	0,009	0,051	276 →	4,2
61	-560	70.93	0,059	0,0117	0,011	0,048	95 ←	4,5
62	-460	70.93	0,062	0,0124	0,009	0,053	96 ←	4,2
63	-360	70.93	0,065	0,013	0,006	0,059	97 ←	4,1
64	-260	70.93	0,069	0,0138	0,006	0,063	100 ←	3,9
65	-160	70.93	0,063	0,0127	0,008	0,055	105 ←	3,7
66	-60	70.93	0,051	0,0101	0,016	0,034	119 🤨	2,3
67 68	40 140	70.93 70.93	0,042 0,054	0,0083 0,0109	0,022 0,014	0,019 0,041	192 ↑ 246 ⊅	1,4 2,8
69	240	70.93	0,054	0,0109	0,014	0,041	257 →	3,7
70	340	70.93	0,069	0,0131	0,006	0,063	261 →	3,9
71	440	70.93	0,064	0,0129	0,007	0,057	263 →	4,1
72	540	70.93	0,061	0,0122	0,009	0,051	264 →	4,2
73	-560	170.93	0,058	0,0116	0,011	0,047	104 ←	4,6
74	-460	170.93	0,061	0,0123	0,009	0,052	107 ←	4,2
75	-360	170.93	0,065	0,013	0,007	0,058	111 ←	4,1
76	-260	170.93	0,069	0,0137	0,006	0,063	118 ↖	4
77	-160	170.93	0,068	0,0135	0,006	0,062	129 🔨	3,8
78 79	-60	170.93 170.93	0,062	0,0124	0,009	0,053 0,048	150 🔨	3,6
80	40 140	170.93	0,059 0,063	0,0118 0,0126	0,011 0,008	0,048	185 ↑ 217 ↗	3,3 3,6
81	240	170.93	0,068	0,0126	0,008	0,053	235 7	3,8
82	340	170.93	0,067	0,0134	0,006	0,061	245 7	4
83	440	170.93	0,063	0,0127	0,008	0,056	250 →	4,1
84	540	170.93	0,06	0,012	0,01	0,05	254 →	4,2
85	-560	270.93	0,057	0,0114	0,012	0,045	113 ↖	4,7
86	-460	270.93	0,06	0,012	0,01	0,05	117 ↖	4,2
87	-360	270.93	0,063	0,0126	0,008	0,055	123 🤨	4,2
88	-260	270.93	0,066	0,0132	0,006	0,06	131 5	4,1
89 90	-160 -60	270.93 270.93	0,069 0,069	0,0138 0,0138	0,006	0,063 0,063	143 ∇	3.0
90 91	-60 40	270.93	0,069	0,0138	0,006 0,006	0,063	161 ↑ 183 ↑	3,9 3,8
92	140	270.93	0,069	0,0137	0,006	0,063	205 🗷	3,8
93	240	270.93	0,068	0,0136	0,006	0,062	221 7	4
94	340	270.93	0,065	0,013	0,007	0,058	232 7	4,1
95	440	270.93	0,062	0,0124	0,009	0,053	239 🗷	4,2
96	540	270.93	0,059	0,0118	0,011	0,048	244 🗷	4,7
97	-560	370.93	0,056	0,0112	0,013	0,043	121 ↖	5,1
98	-460	370.93	0,058	0,0117	0,011	0,047	126 🤨	4,6
99	-360	370.93	0,061	0,0122	0,009	0,051	132 🔨	4,2
100 101	-260 -160	370.93 370.93	0,063 0,065	0,0127 0,013	0,008 0,006	0,056 0,059	141 ↖ 152 ↖	4,2 4.1
101	-100	370.93	0,005	0,013	0,000	0,059	127 1/	4,1

Продолжение таблицы 1.2.6

	Коорд	инаты	Расчетная ко	онцентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	MΓ/M³	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
102	-60	370.93	0,067	0,0134	0,006	0,061	166 个	4,1
103	40	370.93	0,067	0,0134	0,006	0,061	182 个	4
104	140	370.93	0,066	0,0132	0,006	0,06	198 个	4
105	240	370.93	0,065	0,013	0,007	0,058	212 🗷	4,1
106	340	370.93	0,062	0,0125	0,008	0,054	222 🗷	4,2
107	440	370.93	0,06	0,012	0,01	0,05	230 🗷	4,2
108	540	370.93	0,057	0,0115	0,012	0,046	236 🗷	4,6

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:5000** на рисунке 1.2.1.

Картограмма значений наибольших концен менев 0.05

0.05 - 0.1

1.3 Расчет загрязнения по веществу «337. Углерод оксид»

Полное наименование вещества с кодом 337 – Углерод оксид. Максимально разовая предельно допустимая концентрация составляет 5 мг/ $м^3$, класс опасности 4.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 3 (в том числе: организованных - 3, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 1; 11-20 M - 2; 21-29 M - HeT; 30-50 M - HeT; 51-100 M - HeT; более 100 M - HeT.

Суммарный выброс, учтенных в расчёте источников, составляет 0,869 грамм в секунду и 0 тонн в год.

В расчёте учитывались фоновые концентрации, заданные на 1 ПНЗА (пост наблюдения за загрязнением атмосферы).

Сведения о концентрациях загрязняющих веществ на фоновых постах, используемых в расчете загрязнения атмосферы, приведены в таблице 1.3.1.

Таблица № 1.3.1 - Сведения о концентрациях загрязняющих веществ на фоновых постах

						Конц	центрация, м	лг/м³	
Hamanaaaa	Координа	аты поста	3a	грязняющее вещество		ског	ость ветра,	м/с	
Наименование							3 -	· u*	
фонового поста	V	V	иол	113144401100311140	0-2		направле	ние ветра	
	^	r	код наименование 0 — 2 направление ветр С В Ю		Ю	3			
1	2	3	4	5	6	7	8	9	10
Расчетная площа	адка 1(СК Основна	я СК)							
1	0	0	337	Углерод оксид	1,3	1,3	1,3	1,3	1,3

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.3.2.

Таблица № 1.3.2 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВ	С	Кос	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	Гип	Высо	Диаме	скорость,	объем,	темп.,	X_1	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	F	та, м	тр, м	м/с	м ³ /с	°C	X ₂	Y ₂	на, м	рел	ветра,	код	выброса, г/с	oc.	д.ПДК	ксиму-
				•	•		,	-	,		M/C					ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объен	T:		1. Объ	кт №1 «П	ւմար» ՍՊն	2 Վանա	ձորի տեղամա	ıu								
Площ	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех	№1												
1	1	18	0,8	27,5	13,823	140	19.5	27.6	-	1,25	4,301	337	0,435	1	0,003	366,46
2	1	18	0,8	24,2	12,164	130	27.5	13.7	-	1,25	3,897	337	0,38	1	0,003	345,54
3	1	10	0,3	20,4	1,442	90	30.2	23.2	-	1,25	1,378	337	0,054	1	0,004	119,09

Расчет не целесообразен, т.к. См меньше константы целесообразности расчетов: 0,00942<0,05.

1.4 Расчет загрязнения по веществу «2754. Алканы С12-19»

Полное наименование вещества с кодом 2754 — Алканы C12-C19 /в пересчете на суммарный органический углерод/ (Углеводороды предельные C12-C19, растворитель РПК-265П и др.). Максимально разовая предельно допустимая концентрация составляет 1 мг/м³, класс опасности 4.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 3 (в том числе: организованных - 3, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 1; 11-20 M - 2; 21-29 M - Het; 30-50 M - Het; 51-100 M - Het; более 100 M - Het.

Суммарный выброс, учтенных в расчёте источников, составляет 0,405 грамм в секунду и 0 тонн в год.

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.4.2.

Таблица № 1.4.2 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВ	С	Кос	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	П	Высо	Диаме	скорость,	объем,	темп.,	X ₁	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	F	та, м	тр, м	м/с	м ³ /с	°C	X ₂	Y ₂	на, м	рел	ветра,	код	выброса, г/с	oc.	д.ПДК	ксиму-
				, -	, •		7.2	• 2	,		M/C				нн	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объен	т:		1. Объ	ект №1 «П	սմար» ՍՊմ	2 Վանա	ւձորի տեղամա	ıu								
Площ	адк	a:	1. Плог	цадка №1												
Цех:			1. Цех	Nº1												
1	1	18	0,8	27,5	13,823	140	19.5	27.6	-	1,25	4,301	2754	0,174	1	0,006	366,46
2	1	18	0,8	24,2	12,164	130	27.5	13.7	-	1,25	3,897	2754	0,15	1	0,006	345,54
3	1	10	0,3	20,4	1,442	90	30.2	23.2	-	1,25	1,378	2754	0,081	1	0,027	119,09

Расчет не целесообразен, т.к. См меньше константы целесообразности расчетов: 0,03826<0,05.

1.5 Расчет загрязнения по веществу «2908. Пыль неорганическая: SiO2 20-70%»

Полное наименование вещества с кодом 2908 — Пыль неорганическая, содержащая 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.). Максимально разовая предельно допустимая концентрация составляет 0,3 мг/м³, класс опасности 3.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 3 (в том числе: организованных - 3, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 1; 11-20 M - 2; 21-29 M - Het; 30-50 M - Het; 51-100 M - Het; более 100 M - Het.

Суммарный выброс, учтенных в расчёте источников, составляет 2,63 грамм в секунду и 0 тонн в год.

Расчётных точек – 14, расчётных площадок - 1 (узлов расчётной сетки - 108).

Максимальная расчётная приземная концентрация (См), выраженная в долях ПДК населенных мест, по расчётной площадке № 1 составляет:

- на границе СЗЗ **0,39**, которая достигается в точке № *5* X=-*32,74* Y=*108,61*, при направлении ветра *147*°, скорости ветра *4* м/с, в том числе: вклад источников предприятия *0,39*;
- в жилой зоне **0,41**, которая достигается в точке № *14* X=-*33,9* Y=-*190,3*, при направлении ветра *15*°, скорости ветра *4,4* м/с, в том числе: вклад источников предприятия *0,41*.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.5.2.

Таблица № 1.5.2 - Параметры расчетных точек

Наименование		Координаты		Тип точки
паименование	Х	Υ	высота, м	Типточки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	0,9	24,8	2	Точка в промзоне
2	30,6	36,3	2	Точка в промзоне
3	41,7	12,5	2	Точка в промзоне
4	11,6	0,6	2	Точка в промзоне
5	-32,74	108,61	2	Точка на границе ОСЗЗ
6	83,92	102,88	2	Точка на границе ОС33
7	120,27	-16,96	2	Точка на границе ОСЗЗ
8	-37,17	-69,05	2	Точка на границе ОС33
9	-81,92	38,98	2	Точка на границе ОС33
10	-129,2	-96,1	2	Точка в жилой зоне
11	-177,9	-42,1	2	Точка в жилой зоне
12	-196,9	-4	2	Точка в жилой зоне
13	-112,2	-164,9	2	Точка в жилой зоне
14	-33,9	-190,3	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.5.3.

Таблица № 1.5.3 - Параметры расчетных площадок

		Координаты ср	единной линии		Illianiana	D. 10070	Illos	IIIor C22
Наименование	точ	ка 1	точ	ка 2	Ширина,	,		Шаг С33,
	X ₁	Y ₁	X ₂	Y ₂	M	М	сетки, м	M
1	2	3	4	5	6	7	8	9
1	-560	10,41	577,64	10,41	878,959	2	100	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.5.4.

Таблица № 1.5.4 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВ	С	Ко	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº	П	Высо	Диаме	скорость,	объем,	темп	X ₁	Y ₁	шири	К	скор.		масса	К	конц-я,	до ма-
ИЗА	ī	та, м	тр, м	м/с	M ³ /C	°C	X ₂	Y ₂	на, м	рел	ветра,	код	выброса, г/с	oc.	д.ПДК	ксиму-
				WITC	M /C	C	Λ2	12	na, m		M/c		выороса, т/с	Ċ.	4.1.41	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объек	т:		1. Объ	ekt №1 «Nu	ւմար» ՍՊն	2 Վանա	նորի տեղամա	ıu								
Площа	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех	Nº1												
1	1	18	0,8	27,5	13,823	140	19.5	27.6	-	1,25	4,301	2908	0,7	3	0,24	183,23
2	1	18	0,8	24,2	12,164	130	27.5	13.7	-	1,25	3,897	2908	0,58	3	0,22	172,77
4	4	8	80	4	20106,2	23,9	10.47	11.52	10,1	1,25	114,4	2908	1,35	3	0,105	461,51
							21.12	16.59								

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.5.5.

Таблица № 1.5.5 - Значения максимальных концентраций в расчетных точках

		Ко	ординаты			етная нтрация	Фон,	Вклад	Ветер: направлен		Вклад	, ИЗА
Наименование	Тип	Х	Υ	высот а, м	д.ПДК	MΓ/M³	д.ПДК	предпр иятия, д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площад	цка 1(СК	Основная СК)										
1	Пром.	0,9	24,8	2	0,034	0,0103	-	0,034	113 √ 3,9	1.1.2	0,034	99,4
2	Пром.	30,6	36,3	2	0,023	0,0068	-	0,023	188 ↑ 3,9	1.1.2	0,023	100
3	Пром.	41,7	12,5	2	0,029	0,0088	-	0,029	304 🛚 4,3	1.1.1	0,029	100
4	Пром.	11,6	0,6	2	0,032	0,0097	-	0,032	16 \ 4,3	1.1.1	0,032	99,1
5	OC33	-32,74	108,61	2	0,39	0,117	-	0,39	147 ₹ 4	1.1.2	0,203	52
6	OC33	83,92	102,88	2	0,32	0,095	-	0,32	216 7 3,9	1.1.2	0,168	53
7	OC33	120,27	-16,96	2	0,36	0,108	-	0,36	291 → 3,9	1.1.1	0,188	52,2
8	OC33	-37,17	-69,05	2	0,34	0,103	-	0,34	34 ∠ 3,9	1.1.1	0,18	52,3
9	OC33	-81,92	38,98	2	0,35	0,106	-	0,35	100 ← 3,9	1.1.2	0,184	52,4
10	Жил.	-129,2	-96,1	2	0,41	0,123	-	0,41	52 ∠ 4,2	1.1.1	0,22	53,8
11	Жил.	-177,9	-42,1	2	0,404	0,121	-	0,4	73 ← 4,2	1.1.1	0,208	51,4
12	Жил.	-196,9	-4	2	0,4	0,12	-	0,4	83 ← 4,2	1.1.1	0,216	53,8
13	Жил.	-112,2	-164,9	2	0,4	0,12	-	0,4	36 ∠ 4,4	1.1.1	0,21	52,4
14	Жил.	-33,9	-190,3	2	0,41	0,124	-	0,41	15 \downarrow 4,4	1.1.1	0,215	52,2

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.5.6.

Таблица № 1.5.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1


	Коорд	инаты	Расчетная ко	нцентрация		Вклад	Be	тер
Nº	Х	Υ	д.ПДК	MΓ/M³	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
1	-560	-429.07	0,158	0,047	-	0,158	52 ∠	8,5
2	-460	-429.07	0,183	0,055	-	0,183	47 ∠	6,8
3	-360	-429.07	0,207	0,062	-	0,207	40 ∠	6
4	-260	-429.07	0,23	0,07	-	0,23	32 ∠	5,8
5	-160	-429.07	0,253	0,076	-	0,253	22 ↓	5,6

	Коорд	цинаты	Расчетная ко	онцентрация		Вклад	Be	тер
Nº	Х	Υ	д.ПДК	MΓ/M³	Фон <i>,</i> д.ПДК	предприятия,	направл., °	скорость, м/с
1	2	3	4	5	6	д.ПДК 7	8	9
6	-60	-429.07	0,27	0,08	-	0,27	10 ↓	5,4
7	40	-429.07	0,273	0,082	-	0,273	358 ↓	5,4
8	140	-429.07	0,265	0,08	-	0,265	345 ↓	5,5
9	240	-429.07	0,25	0,075	-	0,25	334 🛚	5,6
10	340	-429.07	0,226	0,068	-	0,226	325 ⅓	5,8
11	440	-429.07	0,2	0,06	-	0,2	317 ⅓	6,1
12	540	-429.07	0,175	0,053	-	0,175	311 🛚	7,3
13 14	-560 -460	-329.07 -329.07	0,176	0,053	-	0,176 0,205	59 ∠ 54 ∠	7,2
15	-360	-329.07	0,205 0,236	0,062 0,071	-	0,205	48 Ľ	6,1 5,7
16	-260	-329.07	0,230	0,071	-	0,230	39 ∠	5,4
17	-160	-329.07	0,3	0,09	-	0,3	28 🗹	5,4
18	-60	-329.07	0,32	0,097	-	0,32	13 ↓	5
19	40	-329.07	0,33	0,099	-	0,33	357 ↓	5
20	140	-329.07	0,32	0,096	-	0,32	342 ↓	5,1
21	240	-329.07	0,296	0,089	-	0,296	328 ⅓	5,2
22	340	-329.07	0,26	0,079	-	0,26	318 🛚	5,5
23	440	-329.07	0,23	0,068	-	0,23	310 ↘	5,8
24	540	-329.07	0,196	0,059	-	0,196	304 🗵	6,2
25	-560	-229.07	0,19	0,057	-	0,19	67 ∠	6,3
26	-460	-229.07	0,226	0,068	-	0,226	63 🗹	5,8
27	-360	-229.07	0,266	0,08	-	0,266	57 ∠	5,4
28 29	-260 -160	-229.07 -229.07	0,31 0,35	0,093 0,105	-	0,31 0,35	49 ∠ 36 ∠	5,1 4,7
30	-60	-229.07	0,33	0,103	-	0,33	18 ↓	4,7
31	40	-229.07	0,4	0,113	-	0,4	356 ↓	4,6
32	140	-229.07	0,384	0,115	-	0,384	335 🗓	4,7
33	240	-229.07	0,346	0,104	-	0,346	319 🛚	4,9
34	340	-229.07	0,3	0,09	-	0,3	308 🗸	5,2
35	440	-229.07	0,255	0,076	-	0,255	301 ⅓	5,6
36	540	-229.07	0,215	0,065	-	0,215	296 ↘	6
37	-560	-129.07	0,203	0,061	-	0,203	76 ←	6,1
38	-460	-129.07	0,243	0,073	-	0,243	73 ←	5,7
39	-360	-129.07	0,29	0,087	-	0,29	69 ←	5,3
40	-260	-129.07	0,34	0,103	-	0,34	62 🗹	4,8
41 42	-160 -60	-129.07 -129.07	0,39 0,43	0,118 0,128	-	0,39 0,43	51 ∠ 29 ∠	4,4 4,2
43	40	-129.07	0,45	0,135	-	0,45	354 ↓	4,1
44	140	-129.07	0,44	0,133	-	0,44	322 🗓	4,4
45	240	-129.07	0,39	0,117	-	0,39	305 🛚	4,6
46	340	-129.07	0,33	0,099	-	0,33	295 🛚	5
47	440	-129.07	0,276	0,083	-	0,276	290 →	5,4
48	540	-129.07	0,23	0,069	-	0,23	286 →	5,8
49	-560	-29.07	0,21	0,063	-	0,21	85 ←	6
50	-460	-29.07	0,253	0,076	-	0,253	84 ←	5,6
51	-360	-29.07	0,304	0,091	-	0,304	83 ←	5,1
52 53	-260 -160	-29.07 -29.07	0,364 0,41	0,109 0,124	-	0,364 0,41	80 ← 75 ←	4,6 4,2
54	-60	-29.07	0,41	0,124	-	0,41	59 ∠	3,8
55	40	-29.07	0,23	0,080	-	0,23	342 ↓	3,9
56	140	-29.07	0,42	0,125	-	0,42	293 🗓	4
57	240	-29.07	0,41	0,123	-	0,41	283 →	4,4
58	340	-29.07	0,35	0,104	-	0,35	279 →	4,8
59	440	-29.07	0,29	0,086	-	0,29	277 →	5,3
60	540	-29.07	0,237	0,071	-	0,237	276 →	5,7
61	-560	70.93	0,21	0,063	-	0,21	95 ←	6
62	-460	70.93	0,253	0,076	-	0,253	96 ←	5,6
63	-360	70.93	0,306	0,092	-	0,306	97 ←	5,1
64	-260 -160	70.93	0,37	0,11	-	0,37	100 ←	4,7
65 66	-160 -60	70.93 70.93	0,43 0,35	0,128 0,105	-	0,43 0,35	105 ← 121 下	4,2 3,9
67	40	70.93	0,35	0,105	-	0,33	194 个	3,9
68	140	70.93	0,118	0,0334	-	0,118	247 🗷	3,9
69	240	70.93	0,4	0,113	-	0,4	257 →	4,2
70	340	70.93	0,345	0,103	-	0,345	261 →	4,8

Продолжение таблицы 1.5.6

	Коорд	цинаты	Расчетная ко	онцентрация		Вклад	Be	тер
Nº	Х	Υ	д.ПДК	MΓ/M³	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
71	440	70.93	0,287	0,086	-	0,287	263 →	5,3
72	540	70.93	0,237	0,071	-	0,237	264 →	5,7
73	-560	170.93	0,204	0,061	-	0,204	104 ←	6,1
74	-460	170.93	0,244	0,073	-	0,244	107 ←	5,7
75	-360	170.93	0,293	0,088	-	0,293	111 ←	5,3
76	-260	170.93	0,35	0,105	-	0,35	118 ↖	4,8
77	-160	170.93	0,41	0,123	-	0,41	129 ↖	4,6
78	-60	170.93	0,455	0,137	-	0,455	151 ┖	4,3
79	40	170.93	0,44	0,132	-	0,44	186 个	4,1
80	140	170.93	0,42	0,125	-	0,42	218 🗷	4,2
81	240	170.93	0,38	0,113	-	0,38	235 🗷	4,5
82	340	170.93	0,325	0,097	-	0,325	245 🗷	4,9
83	440	170.93	0,274	0,082	-	0,274	250 →	5,4
84	540	170.93	0,23	0,069	-	0,23	254 →	5,8
85	-560	270.93	0,192	0,058	-	0,192	113 ↖	6,4
86	-460	270.93	0,227	0,068	-	0,227	117 ↖	5,8
87	-360	270.93	0,27	0,081	-	0,27	123 ↖	5,4
88	-260	270.93	0,315	0,094	-	0,315	131 ↖	5,1
89	-160	270.93	0,36	0,108	-	0,36	144 ↖	4,8
90	-60	270.93	0,39	0,117	-	0,39	162 个	4,7
91	40	270.93	0,4	0,119	-	0,4	184 ↑	4,6
92	140	270.93	0,375	0,112	-	0,375	205 🗷	4,6
93	240	270.93	0,34	0,101	-	0,34	221 🗷	4,8
94	340	270.93	0,295	0,088	-	0,295	232 🗷	5,2
95	440	270.93	0,25	0,076	-	0,25	239 🗷	5,6
96	540	270.93	0,214	0,064	-	0,214	244 🗷	6
97	-560	370.93	0,177	0,053	-	0,177	121 ┖	7,4
98	-460	370.93	0,207	0,062	-	0,207	126 ↖	6,1
99	-360	370.93	0,24	0,072	-	0,24	132 ↖	5,7
100	-260	370.93	0,274	0,082	-	0,274	141 ↖	5,4
101	-160	370.93	0,305	0,092	-	0,305	152 ↖	5,1
102	-60	370.93	0,327	0,098	-	0,33	167 个	5
103	40	370.93	0,33	0,099	-	0,33	183 ↑	5
104	140	370.93	0,317	0,095	-	0,32	198 个	5,1
105	240	370.93	0,29	0,087	-	0,29	212 🗷	5,3
106	340	370.93	0,26	0,078	-	0,26	222 🗷	5,5
107	440	370.93	0,226	0,068	-	0,226	230 🗷	5,8
108	540	370.93	0,195	0,059	-	0,195	236 🗷	6,2

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:5000** на рисунке 1.5.1.

1.6 Мажорантный расчет загрязнения по всем веществам и группам суммаций

Расчёт загрязнения для мажоранты проводится по всем источникам загрязнения атмосферы и по всем веществам и группам суммации. При этом результат расчёта для каждой расчётной точки представляет собой наибольшее значение из максимальных расчётных концентраций, полученных для данной точки отдельно по каждому из веществ и групп суммации.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.6.2.

Таблица № 1.6.2 - Параметры расчетных точек

		Координаты		T
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	0,9	24,8	2	Точка в промзоне
2	30,6	36,3	2	Точка в промзоне
3	41,7	12,5	2	Точка в промзоне
4	11,6	0,6	2	Точка в промзоне
5	-32,74	108,61	2	Точка на границе ОС33
6	83,92	102,88	2	Точка на границе ОСЗЗ
7	120,27	-16,96	2	Точка на границе ОСЗЗ
8	-37,17	-69,05	2	Точка на границе ОС33
9	-81,92	38,98	2	Точка на границе ОСЗЗ
10	-129,2	-96,1	2	Точка в жилой зоне
11	-177,9	-42,1	2	Точка в жилой зоне
12	-196,9	-4	2	Точка в жилой зоне
13	-112,2	-164,9	2	Точка в жилой зоне
14	-33,9	-190,3	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.6.3.

Таблица № 1.6.3 - Параметры расчетных площадок

			Координаты ср	единной линии		Illiania	Duranta	Шаг	Шаг С33,	
Наименование	Наименование	точі	ка 1	точ	ка 2	' '	l '	м сетки, м		
		X_1	Υ ₁	X ₂	Y ₂	М	M	сетки, м	M	
	1	2	3	4	5	6	7	8	9	
1		-560	10,41	577,64	10,41	878,959	2	100	-	

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.6.4.

Таблица № 1.6.4 - Параметры источников загрязнения атмосферы

	Параметры ГВС			С	Координаты				Опас.	Загрязняющее вещество			Mauc	Расст.		
Nº	-	Высо	Диаме	скорость,	объем,	темп.,	X ₁	Y ₁	идиш		скор.		масса	v	Макс. конц-я.	до ма-
ИЗА	1	та, м	тр, м	м/с	м ³ /с	°C	X ₂	Y ₂	на, м	рел	ветра,	код	выброса, г/с	oc.		ксиму-
				, 0	/ 0	Ŭ	7.2	• 2	,		M/C		55.0p00a, 1, 0	00.	LL	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Объект: 1. Объект №1 «Ոսմար» ՍՊԸ Վանաձորի տեղամաս

Площадка: 1. Площадка №1 Цех: 1. Цех №1

47

Продолжение таблицы 1.6.4

				Пар	аметры ГВ	С	Кос	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст.
№ ИЗА	ТиП	Высо та, м	Диаме тр, м	скорость, м/с	объем, м³/с	темп., °С	X ₁	Y ₁ Y ₂	шири на, м	К рел	скор. ветра, м/с	код	масса выброса, г/с	K oc.	конц-я, д.ПДК	до ма- ксиму- ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1	18	0,8	27,5	13,823	140	0	0	-	1,25	4,301	2908	0,7	3	0,24	183,23
												337	0,435	1	0,003	366,46
												301	0,149	1	0,025	366,46
												2754	0,174	1	0,006	366,46
2	1	18	0,8	24,2	12,164	130	0	0	-	1,25	3,897	2908	0,58	3	0,22	172,77
												337	0,38	1	0,003	345,54
												301	0,13	1	0,025	345,54
												2754	0,15	1	0,006	345,54
3	1	10	0,3	20,4	1,442	90	0	0	-	1,25	1,378	337	0,054	1	0,004	119,09
												301	0,019	1	0,031	119,09
												2754	0,081	1	0,027	119,09
4	4	8	80	4	20106,2	23,9	31.3	15.6	10,1	1,25	114,4	2908	1,35	3	0,105	461,51
							84.8	87.7								

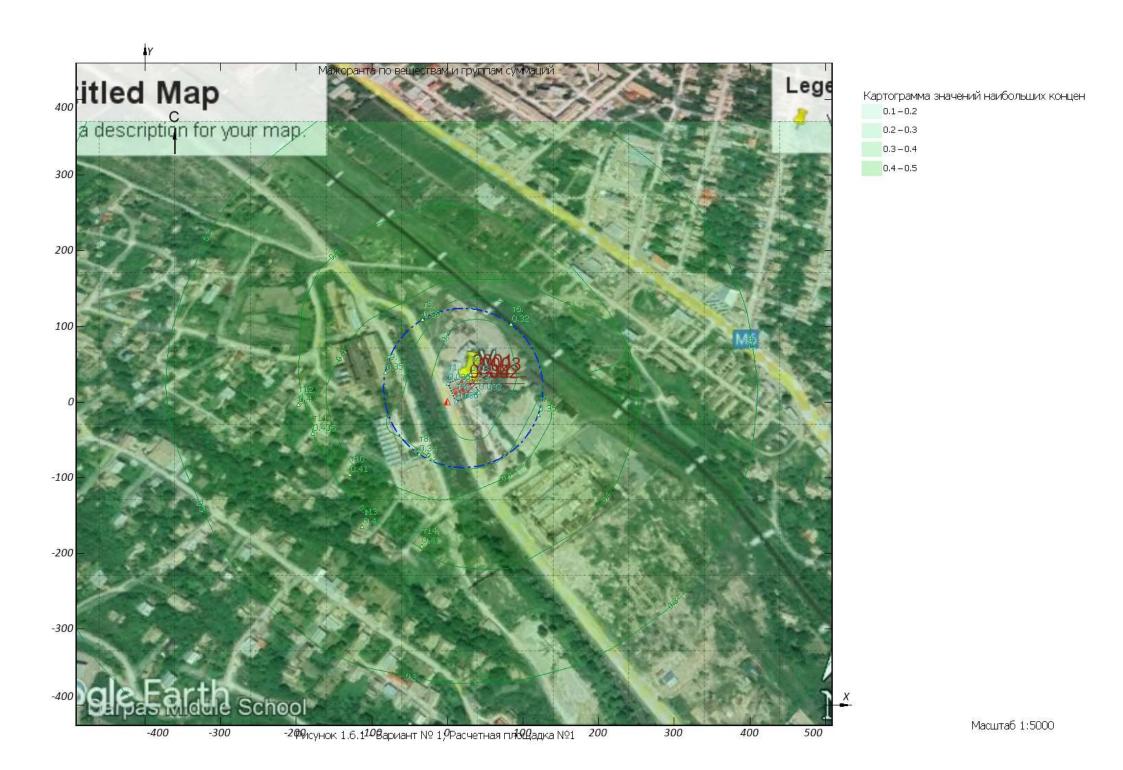
Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.6.5.

Таблица № 1.6.5 - Значения максимальных концентраций в расчетных точках

		Ко	ординаты		Расчетная концентрация		Фон,	Вклад предпр	Ветер: направлен		Вклад	ИЗА	
Наименование	Тип	Х	Υ	высот а, м	д.ПДК	код ЗВ	д.ПДК	иятия <i>,</i> д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%	
1	2	3	4	5	6	7	8	9	10	11	12	13	
асчетная площадка 1(СК Основная СК)													
1	Пром.	0,9	24,8	2	0,036	301	0,026	0,009	93 ← 1,3	1.1.3	0,009	25,8	
2	Пром.	30,6	36,3	2	0,031	301	0,029	0,002	182 1,4	1.1.3	0,002	7,2	
3	Пром.	41,7	12,5	2	0,032	301	0,029	0,003	313 🛚 1,4	1.1.3	0,003	9,9	
4	Пром.	11,6	0,6	2	0,035	301	0,026	0,009	39 ∠ 1,3	1.1.3	0,009	25,7	
5	OC33	-32,74	108,61	2	0,39	2908	-	0,39	147 √ 4	1.1.2	0,203	52	
6	OC33	83,92	102,88	2	0,32	2908	-	0,32	216 7 3,9	1.1.2	0,168	53	
7	OC33	120,27	-16,96	2	0,36	2908	-	0,36	291 → 3,9	1.1.1	0,188	52,2	
8	OC33	-37,17	-69,05	2	0,34	2908	-	0,34	34 ∠ 3,9	1.1.1	0,18	52,3	
9	OC33	-81,92	38,98	2	0,35	2908	-	0,35	100 ← 3,9	1.1.2	0,184	52,4	
10	Жил.	-129,2	-96,1	2	0,41	2908	-	0,41	52 ∠ 4,2	1.1.1	0,22	53,8	
11	Жил.	-177,9	-42,1	2	0,404	2908	-	0,4	73 ← 4,2	1.1.1	0,208	51,4	
12	Жил.	-196,9	-4	2	0,4	2908	-	0,4	83 ← 4,2	1.1.1	0,216	53,8	
13	Жил.	-112,2	-164,9	2	0,4	2908	-	0,4	36 ∠ 4,4	1.1.1	0,21	52,4	
14	Жил.	-33,9	-190,3	2	0,41	2908	-	0,41	15 \ 4,4	1.1.1	0,215	52,2	

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.6.6.

Таблица № 1.6.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1


	Коорд	инаты	Расчетная к	онцентрация		Вклад	Ветер		
Nº	Х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с	
1	2	3	4	5	6	7	8	9	
1	-560	-429.07	0,158	2908	-	0,158	52 ∠	8,5	
2	-460	-429.07	0,183	2908	-	0,183	47 ∠	6,8	
3	-360	-429.07	0,207	2908	-	0,207	40 ∠	6	
4	-260	-429.07	0,23	2908	-	0,23	32 ∠	5,8	
5	-160	-429.07	0,253	2908	-	0,253	22 ↓	5,6	
6	-60	-429.07	0,27	2908	-	0,27	10 ↓	5,4	
7	40	-429.07	0,273	2908	-	0,273	358 ↓	5,4	

	Коор	динаты	Расчетная н	онцентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия,	направл., °	скорость, м/с
1				• • • • • • • • • • • • • • • • • • • •		д.ПДК	•	
8	140	-429.07	0,265	5 2908	-	7 0,265	8 345 ↓	9 5,5
9	240	-429.07	0,265	2908	-	0,265	345 ↓ 334 ↓	5,6
10	340	-429.07	0,23	2908	-	0,23	325 🗓	5,8
11	440	-429.07	0,220	2908	-	0,220	317 🗓	6,1
12	540	-429.07	0,175	2908	-	0,175	311 🗓	7,3
13	-560	-329.07	0,176	2908	-	0,176	59 ∠	7,2
14	-460	-329.07	0,205	2908	-	0,205	54 ∠	6,1
15	-360	-329.07	0,236	2908	-	0,236	48 ∠	5,7
16	-260	-329.07	0,27	2908	-	0,27	39 ∠	5,4
17	-160	-329.07	0,3	2908	-	0,3	28 ∠	5,4
18	-60	-329.07	0,32	2908	-	0,32	13 ↓	5
19	40	-329.07	0,33	2908	-	0,33	357 ↓	5
20	140	-329.07	0,32	2908	-	0,32	342 ↓	5,1
21	240	-329.07	0,296	2908	-	0,296	328 ⅓	5,2
22	340	-329.07	0,26	2908	-	0,26	318 🛚	5,5
23	440	-329.07	0,23	2908	-	0,23	310 🛚	5,8
24	540	-329.07	0,196	2908	-	0,196	304 🔽	6,2
25	-560	-229.07	0,19	2908	-	0,19	67 ∠	6,3
26	-460	-229.07	0,226	2908	-	0,226	63 🗹	5,8
27	-360	-229.07	0,266	2908	-	0,266	57 L⁄	5,4
28 29	-260 -160	-229.07 -229.07	0,31 0,35	2908 2908	-	0,31 0,35	49 ∠ 36 ∠	5,1 4,7
30	-60	-229.07	0,35	2908	-	0,33	18 ↓	4,7
31	40	-229.07	0,38	2908	-	0,38	356 ↓	4,6
32	140	-229.07	0,384	2908	-	0,384	335 ⅓	4,7
33	240	-229.07	0,346	2908	-	0,346	319 🗓	4,7
34	340	-229.07	0,3	2908	-	0,3	308 7	5,2
35	440	-229.07	0,255	2908	-	0,255	301 🗵	5,6
36	540	-229.07	0,215	2908	-	0,215	296 🗓	6
37	-560	-129.07	0,203	2908	-	0,203	76 ←	6,1
38	-460	-129.07	0,243	2908	-	0,243	73 ←	5,7
39	-360	-129.07	0,29	2908	-	0,29	69 ←	5,3
40	-260	-129.07	0,34	2908	-	0,34	62 ∠	4,8
41	-160	-129.07	0,39	2908	-	0,39	51 ∠	4,4
42	-60	-129.07	0,43	2908	-	0,43	29 ∠	4,2
43	40	-129.07	0,45	2908	-	0,45	354 ↓	4,1
44	140	-129.07	0,44	2908	-	0,44	322 ⅓	4,4
45	240	-129.07	0,39	2908	-	0,39	305 🛚	4,6
46	340	-129.07	0,33	2908	-	0,33	295 🛚	5
47	440	-129.07	0,276	2908	-	0,276	290 →	5,4
48	540	-129.07	0,23	2908	-	0,23	286 →	5,8
49	-560	-29.07	0,21	2908	-	0,21	85 ←	6
50	-460	-29.07	0,253	2908	-	0,253	84 ←	5,6
51	-360	-29.07	0,304	2908	-	0,304	83 ←	5,1
52 53	-260 -160	-29.07 -29.07	0,364 0,41	2908 2908	-	0,364 0,41	80 ← 75 ←	4,6 4,2
53	-160	-29.07	0,41	2908	-	0,41	75 ←	3,8
55	40	-29.07	0,29	2908	-	0,29	342 ↓	3,8
56	140	-29.07	0,17	2908	-	0,17	293 🗓	4
57	240	-29.07	0,42	2908	-	0,42	283 →	4,4
58	340	-29.07	0,35	2908	-	0,35	279 →	4,4
59	440	-29.07	0,29	2908	-	0,29	277 →	5,3
60	540	-29.07	0,237	2908	-	0,237	276 →	5,7
61	-560	70.93	0,21	2908	-	0,21	95 ←	6
62	-460	70.93	0,253	2908	-	0,253	96 ←	5,6
63	-360	70.93	0,306	2908		0,306	97 ←	5,1
64	-260	70.93	0,37	2908	-	0,37	100 ←	4,7
65	-160	70.93	0,43	2908	-	0,43	105 ←	4,2
66	-60	70.93	0,35	2908	-	0,35	121 ↖	3,9
67	40	70.93	0,118	2908	-	0,118	194 个	3,7
68	140	70.93	0,38	2908	-	0,38	247 🗷	3,9
69	240	70.93	0,4	2908	-	0,4	257 →	4,2
70	340	70.93	0,345	2908	-	0,345	261 →	4,8
71	440	70.93	0,287	2908	-	0,287	263 →	5,3
72	540	70.93	0,237	2908	-	0,237	264 →	5,7

Продолжение таблицы 1.6.6

	Коорд	цинаты	Расчетная к	онцентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
73	-560	170.93	0,204	2908	-	0,204	104 ←	6,1
74	-460	170.93	0,244	2908	-	0,244	107 ←	5,7
75	-360	170.93	0,293	2908	-	0,293	111 ←	5,3
76	-260	170.93	0,35	2908	-	0,35	118 ↖	4,8
77	-160	170.93	0,41	2908	-	0,41	129 ↖	4,6
78	-60	170.93	0,455	2908	-	0,455	151 ↖	4,3
79	40	170.93	0,44	2908	-	0,44	186 个	4,1
80	140	170.93	0,42	2908	-	0,42	218 🗷	4,2
81	240	170.93	0,38	2908	-	0,38	235 🗷	4,5
82	340	170.93	0,325	2908	-	0,325	245 🗷	4,9
83	440	170.93	0,274	2908	-	0,274	250 →	5,4
84	540	170.93	0,23	2908	-	0,23	254 →	5,8
85	-560	270.93	0,192	2908	-	0,192	113 ↖	6,4
86	-460	270.93	0,227	2908	-	0,227	117 ┖	5,8
87	-360	270.93	0,27	2908	-	0,27	123 ↖	5,4
88	-260	270.93	0,315	2908	-	0,315	131 ↖	5,1
89	-160	270.93	0,36	2908	-	0,36	144 ↖	4,8
90	-60	270.93	0,39	2908	-	0,39	162 个	4,7
91	40	270.93	0,4	2908	-	0,4	184 ↑	4,6
92	140	270.93	0,375	2908	-	0,375	205 🗷	4,6
93	240	270.93	0,34	2908	-	0,34	221 🗷	4,8
94	340	270.93	0,295	2908	-	0,295	232 🗷	5,2
95	440	270.93	0,25	2908	-	0,25	239 🗷	5,6
96	540	270.93	0,214	2908	-	0,214	244 🗷	6
97	-560	370.93	0,177	2908	-	0,177	121 ┖	7,4
98	-460	370.93	0,207	2908	-	0,207	126 ↖	6,1
99	-360	370.93	0,24	2908	-	0,24	132 ┖	5,7
100	-260	370.93	0,274	2908	-	0,274	141 ↖	5,4
101	-160	370.93	0,305	2908	-	0,305	152 ┖	5,1
102	-60	370.93	0,327	2908	-	0,33	167 个	5
103	40	370.93	0,33	2908	-	0,33	183 个	5
104	140	370.93	0,317	2908	-	0,32	198 个	5,1
105	240	370.93	0,29	2908	-	0,29	212 🗷	5,3
106	340	370.93	0,26	2908	-	0,26	222 🗷	5,5
107	440	370.93	0,226	2908	-	0,226	230 🗷	5,8
108	540	370.93	0,195	2908	-	0,195	236 🗷	6,2

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:5000** на рисунке 1.6.1.

