ARARAT VALLEY ATLAS

ARARAT VALLEY ATLAS

YEREVAN 2021

Prepared by:

Frepared by:	
ME&A, Inc.	Armenian Branch of ME&A, Inc.
4350 East-West Highway	105/1 Teryan St., Suite 204,
Suite 210	Yerevan 0009
Bethesda, MD 20814	Republic of Armenia
Tel: +1 301 652 4334	Tel. +374 10 514 315
Fax: +1 240 630 8935	Fax: +374 10 514 317
www.MEandAHQ.com	Email: aspired@engl.com

DISCLAIMER

This publication is made possible by the support of the American people through the United States Agency for International Development (USAID). The contents are the sole responsibility of ME&A, Inc. and do not necessarily reflect the views of USAID or the United States Government.

CONTENTS

Section / Map	Scale	Page
List of Abbreviations		3
Data Sources		4
Introduction		5
I. Republic of Armenia	1:1 000 000	7
2. Administrative Map of the Republic of Armenia	1:1 000 000	8
3. Basin Management Areas and Main River Basins of the Republic of Armenia	1:1 000 000	9
4. Satellite Image of the Republic of Armenia and Ararat Valley	1:1 000 000	10
Section 1. General Characteristics of the Ararat Valley		11
5. Catchment Area of the Ararat Valley	I:700 000	12
6. Administrative Map of the Ararat Valley	I:250 000	13
7. Topography of the Ararat Valley	I:250 000	14
8. Population Density in the Ararat Valley	I:250 000	15
9. Water Infrastructure in the Ararat Valley	I:250 000	16
10. Water Supply Services in the Ararat Valley	I:250 000	17
II. Land Cover/Use Map of the Ararat Valley	I:250 000	18
12. Geology of the Ararat Valley	I:350 000	19
13. Monitoring of Surface Water Resources in the Ararat Valley	I:250 000	20
14. Monitoring of Groundwater Resources in the Ararat Valley	I:250 000	21
Section 2. Inventory of Groundwater Wells, Natural Springs and Fish Farms in the Ararat Valley		22
15. Groundwater Wells in the Ararat Valley Grouped by Well Depth in 2016	I:250 000	23
16. Groundwater Wells in the Ararat Valley Grouped by Operation Status in 2016	I:250 000	24
17. Groundwater Wells in the Ararat Valley Grouped by Purpose of Use in 2016	I:250 000	25
18. Groups of Natural Springs in the Ararat Valley in 2016	I:250 000	26
19. Status of Fish Farms in the Ararat Valley in 2016	I:250 000	27
Section 3. Water Balance and Water Supply and Demand Balance of the Ararat Valley	_	28
20. Coded Catchment Areas of the Ararat Valley	I:500 000	31
21. Hydrologic Observation Posts and Meteorological Stations in the Ararat Valley Catchment Area	I:500 000	32
22. Distribution of the Multiannual Average Precipitation in the Ararat Valley Catchment Area for the Period of 1961-2016	I:500 000	33
23. Distribution of the Multiannual Average Evapotranspiration in the Ararat Valley Catchment Area for the Period of 1961-2016	I:500 000	34
24. Distribution of the Multiannual Average Natural Surface Flow in the Ararat Valley Catchment Area for the Period of 1961-2016	I:500 000	35
25. Distribution of the Multiannual Average Deep Flow in the Ararat Valley Catchment Area for the Period of 1961-2016	I:500 000	36
26. Distribution of the Annual Precipitation and Evapotranspiration in the Ararat Valley in 2016	I:400 000	37
27. Distribution of the Annual Natural Surface Flow and Deep Flow in the Ararat Valley in 2016	I:400 000	38
28. Proportion and Distribution of the Surface Runoff Generated in the Ararat Valley in 2016	I:400 000	39
29. Surface Water and Groundwater Abstraction in the Ararat Valley in 2016 According to the Water Use Permits Issued by the ME	I:250 000	40
30. Actual Groundwater Use in the Ararat Valley in 2016 According to the Groundwater Wells Inventory Data	I:250 000	41
31. Surface Water and Groundwater Abstraction in the Ararat Valley in 2019 According to the Water Use Permits Issued by the ME	I:250 000	42
32. Groundwater Wells Temporarily or Permanently Closed in the Ararat Valley During 2014-2020	I:250 000	43
Section 4. Modeling of the Ararat Valley Groundwater Basin and Assessment of Its State in 2016		44
33. Pressure Boundaries in the Ararat Valley Groundwater Basin	I:250 000	46
34. Hydrogeological Structure of the Ararat Valley Groundwater Basin	I:250 000	47
35. Three-Dimensional Model of the Ararat Valley Groundwater Basin	I:250 000	48
Section 5. Assessment of Water Resources Quality in the Ararat Valley		49
36. Classification of the Ararat Valley Surface Water Quality and Assessment of Surface Water Suitability for Irrigation in 2016	I:400 000	50
37. Classification of the Ararat Valley Groundwater Resources in Terms of Suitability for Drinking in 2016 and 2017	I:400 000	51
38. Classification of the Ararat Valley Groundwater Resources in Terms of Suitability for Irrigation in 2016 and 2017	I:400 000	52
39. Classification of the Ararat Valley Groundwater Resources by Level of Mineralization in 2016 and 2017	I:400 000	53

Section / Map	Scale	Page
Section 6. Assessment of the Impact of Climate Change on the Ararat Valley Catchment Area		54
40. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2040, Against the Baseline Average for 1961-1990, under the IPCC RCP 6.0 Scenario (CCSM4 Model)	I:500 000	56
41. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2040, Against the Baseline Average for 1961-1990, under the IPCC RCP 8.5 Scenario (CCSM4 Model)	I:500 000	57
42. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2040, Against the Baseline Average for 1961-1990, under the IPCC RCP 8.5 Scenario (METRAS Model)	I:500 000	58
43. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2070, Against the Baseline Average for 1961-1990, under the IPCC RCP 6.0 Scenario (CCSM4 Model)	I:500 000	59
44. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2070, Against the Baseline Average for 1961-1990, under the IPCC RCP 8.5 Scenario (CCSM4 Model)	I:500 000	60
45. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2070, Against the Baseline Average for 1961-1990, under the IPCC RCP 8.5 Scenario (METRAS Model)	I:500 000	61
46. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2100, Against the Baseline Average for 1961-1990, under the IPCC RCP 6.0 Scenario (CCSM4 Model)	I:500 000	62
47. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2100, Against the Baseline Average for 1961-1990, under the IPCC RCP 8.5 Scenario (CCSM4 Model)	I:500 000	63
48. Projected Deviation of the Natural Surface Flow in the Ararat Valley Catchment Area by 2100, Against the Baseline Average for 1961-1990, under the IPCC RCP 8.5 Scenario (METRAS Model)	I:500 000	64

TABLES

Name	Section	Page
I. Annual Values of Water Balance Components of the Ararat Valley Catchment Area in 2016	3	29
2. Multiannual Average Values of Water Balance Components of the Ararat Valley Catchment Area for the Period of 1961-2016	3	29
3. Calculated Values of Water Supply and Demand Balance Components of the Ararat Valley in 2016	3	30
4. Calculated Values of Ecological Flow in the Rivers of the Ararat Valley in 2016	3	30
5. Description of the Lithologic Layers of the Ararat Valley Groundwater Basin	4	44
6. Main Hydrogeologic Units of the Ararat Valley Groundwater Basin	4	45
7. Changes in Average Annual Temperature at the Meteorological Stations	6	54
8. Changes in Average Annual Precipitation at the Meteorological Stations	6	54
9. Changes in Average Annual Natural Surface Flow at the Hydrologic Observation Posts	6	54
10. Projected Changes in Average Annual Air Temperature in the Ararat Valley	6	54
II. Projected Changes in Annual Precipitation in the Ararat Valley	6	55
I2. Projected Values of the Natural Surface Inflow to the Ararat Valley and Deviation from the Baseline Average Values under Various IPCC Scenarios	6	55

FIGURES

Name	Section	Page
I. Discharge Rates from Self-flowing, Pump-operated and Non-operational Wells in 2016	2	22
2. Number of Non-operational Wells by Status in 2016	2	22
3. Discharge Rates from the Pump-operated and Self-flowing Wells Used by Various Sectors in 2016	2	22
4. Number of Groundwater Wells in Operational and Non-operational Fish Farms in 2016	2	22
5. Location of the Observation Posts for Calculation of the Surface Water Inflow and Outflow Components of the Ararat Valley Water Balance	3	29
6. Main Directions of Groundwater Inflow and Outflow in the Ararat Valley	3	29
7. Annual Water Balance of the Ararat Valley in 2016	3	29
8. Multiannual Average Water Balance of the Ararat Valley for the Period of 1961-2016	3	29
9. Grouping the Lithologic Layers into the Main Hydrogeologic Units	4	45
10. Generating the Main Hydrogeologic Units of the Ararat Valley Groundwater Basin	4	45
II. Constructing the Geo-rasters Based on the Main Hydrogeologic Units	4	45
12. Comparison of the Projected Values of Natural Surface Flow (Inflow to the Ararat Valley) with the Baseline (1961-1990) and Analysis Period (1991-2016) Values, IPCC RCP 6.0 Scenario (CCSM4 Model)	6	55
13. Comparison of the Projected Values of Natural Surface Flow (Inflow to the Ararat Valley) with the Baseline (1961-1990) and Analysis Period (1991-2016) Values, IPCC RCP 8.5 Scenario (CCSM4 Model)	6	55
14. Comparison of the Projected Values of Natural Surface Flow (Inflow to the Ararat Valley) with the Baseline (1961-1990) and Analysis Period (1991-2016) Values, IPCC RCP 8.5 Scenario (METRAS Model)	6	55
15. Observed and Projected Values of the Annual Natural Surface Inflow to the Ararat Valley under Various Scenarios	6	55

ABBREVIATIONS

Abbreviation	Explanation
AHGW	ArcHydro Groundwater
ASPIRED	Advanced Science and Partnerships for Integrated Resource Development
BMA	Basin Management Area
CADI	Computer Assisted Development, Inc.
CCSM	Community Climate System Model
CN	Curve Number
CSJC	Closed Joint-Stock Company
DEM	Digital Elevation Model
DSS	Decision Support System
ESRI	Environmental Systems Research Institute
FAO	Food and Agriculture Organization of the United Nations
GIS	Geographic Information System
GMS	Groundwater Modeling System
НМС	Hydrometeorology and Monitoring Center
IPCC	Intergovernmental Panel on Climate Change
ME	Ministry of Environment
ME&A	ME&A, Inc.
METRAS	Mesoscale Transport and Stream
MTAI	Ministry of Territorial Administration and Infrastructure
NASA	National Aeronautics and Space Administration
RA	Republic of Armenia
RCP	Representative Concentration Pathway
SRTM	Shuttle Radar Topography Mission
SWCIS	State Water Cadaster Information System
WUA	Water Users Association
WUP	Water Use Permit
USAID	United States Agency for International Development
USGS	United States Geological Survey

DATA SOURCES

Section	Source
	SWCIS Data Warehouse of the RA ME, 2020
	• RA Government Decision N: 549-N on Defining Elements of Water Balance and Distribution of Water Resources and Water Reserves per River Basins of Armenia, Dated May 29, 2008
Introduction: Republic of Armenia	RA Government Decision N: 338-N on Approving the Management Plan for the Ararat Basin Management Area for 2016-2021 and Priority Measures for Effective Management, Dated March 31, 2016
	RA Government Decision N: 539-N on Approving the Management Plan for the Southern Basin Management Area for 2016- 2021 and Priority Measures for Effective Management, Dated May 26, 2016
	• RA Government Decision N: 240-N on Approving the Management Plan for the Akhuryan Basin Management Area for 2017- 2022 and Priority Measures for Effective Management, Dated March 9, 2017
	SWCIS Data Warehouse of the RA ME, 2020
	Water Committee of the RA MTAI, Water Supply Services in the Ararat Valley, 2020
	Water Committee of the RA MTAI, WUAs in the Ararat Valley and their Service Areas, 2019
	Water Committee of the RA MTAI, Water Infrastructure and Drainage Network in the Ararat Valley, 2019
I. General Characteristics of the	RA MTAI, Population of the Ararat and Armavir Marzes of Armenia as of January 1, 2020
Ararat Valley	Republican Geologic Fund State Non-commercial Organization of the RA MTAI, Geologic Map of the Ararat Valley, 1983
	 USAID Clean Energy and Water Program, Final Report on Assessment Study of Groundwater Resources in the Ararat Valley, 2014
	• USAID ASPIRED Project, Report on Digital Hydrogeologic Map of the Ararat Valley and Three-dimensional Model of the Ararat Valley Groundwater Basin, 2018
2. Inventory of Groundwater	SWCIS Data Warehouse of the RA ME, 2020
Wells, Natural Springs and Fish Farms in the Ararat Valley	• USAID ASPIRED Project, Final Report on Inventory of Groundwater Wells, Natural Springs and Fish Farms in the Ararat Valley, 2016
	SWCIS Data Warehouse of the RA ME, 2020
	• HMC of the RA ME, Data from the Meteorological Stations and Hydrologic Observations Posts of the Ararat Valley and Ararat Valley Catchment Area for the Period of 1961-2016
3. Water Balance and Water Supply and Demand Balance of	• USAID ASPIRED Project, Final Report on Inventory of Groundwater Wells, Natural Springs and Fish Farms in the Ararat Valley, 2016
the Ararat Valley	USAID ASPIRED Project, Report on Methodology and Calculated Values of Natural Flow and Water Balance of the Ararat Valley, 2018
	• USAID ASPIRED Project, Report on Calculated Values of Water Balance and Water Supply and Demand Balance in the Ararat Valley Using Modeling of the Ararat Valley Groundwater Basin, 2021
	SWCIS Data Warehouse of the RA ME, 2020
	USGS, Hydrogeologic Framework and Groundwater Conditions of the Ararat Basin in Armenia, 2017
4. Modeling of the Ararat Valley Groundwater Basin and Assessment of Its State in 2016	USAID ASPIRED Project, Report on Digital Hydrogeologic Map of the Ararat Valley and Three-dimensional Model of the Ararat Valley Groundwater Basin, 2018
	• USAID ASPIRED Project, Report on Calculated Values of Water Balance and Water Supply and Demand Balance in the Ararat Valley using Modeling of the Ararat Valley Groundwater Basin, 2021
	SWCIS Data Warehouse of the RA ME, 2020
	• HMC of the RA ME, Hydrochemical Monitoring Data from the Water Quality Monitoring Points of the Ararat Valley and Ararat Valley Catchment Area for the Period of 2016-2017
5. Assessment of Water Resources Quality in the Ararat	 RA Government Decision N: 75-N on Defining Water Quality Norms for Each Basin Management Area, Taking into Consideration Peculiarities of the Area, Dated January 27, 2011
Valley	 Order of the RA Minister of Health N: 876 on Defining N-2-III-A 2-I Sanitary Norms and Rules for Drinking Water: Hygienic Requirements for the Centralized Systems of Water Supply, Quality Control, Dated December 25, 2002
	United Nation's FAO, Water Quality Standards for Irrigation, 1985
	SWCIS Data Warehouse of the RA ME, 2020
6. Assessment of the Impact of Climate Change on the Ararat	 HMC of the RA ME, Monitoring Data from Meteorological Stations and Hydrologic Observations Posts in the Ararat Valley and Its Catchment Area for the Period of 1961-2016
Valley Catchment Area	USAID ASPIRED Project, Report on Climate Change Analysis in the Ararat Valley, 2019

4

Introduction

The Advanced Science and Partnerships for Integrated Resource Development (ASPIRED) Project of the United States Agency for International Development (USAID) is a project with duration in 6 years that supports the Government of the Republic of Armenia (RA) in sustainable management of water resources and promotes advanced practices of water use in the Ararat Valley through the use of science, technology, innovation, and partnership initiatives. The ultimate goal of the project is to reduce the rate of groundwater abstraction in the Ararat Valley to sustainable levels. The ASPIRED Project is implemented by ME&A, Inc. (ME&A).

To support the Government of Armenia in developing and implementing datadriven policies for sustainable management of groundwater resources in the Ararat Valley, the ASPIRED Project, in a close collaboration with stakeholder institutions, has focused from the start of the project on establishing a comprehensive and reliable data system on water resources, as well as developing decision support tools for the Ararat Valley.

The results of ASPIRED's work are summarized in this single publication, the Ararat Valley Atlas. This Atlas integrates both data and information on Ararat Valley water resources, provided by state institutions, as well as geospatial data that was collected and analyzed by the ASPIRED Project. It contains both cartographic and statistical information.

The Ararat Valley Atlas was prepared by ASPIRED Project, in close collaboration with its key partner - the RA Ministry of Environment (ME), other stakeholder institutions and international partner organizations. Its content was discussed with the specialists of the Ministries of Environment, Economy, Territorial Administration and Infrastructure of Armenia. Modeling and analytical work were performed in collaboration with and through guidance from Computer Assisted Development, Inc. (CADI), a U.S. consulting company, and Aquaveo, a U.S. modeling software company. CADI and Aquaveo specialize in providing technical solutions to governments and businesses worldwide on sustainable management of water resources and nature conservation, using extensively applied information technology and advanced solutions for hydrologic and hydrogeological analyses and modeling. The Ararat Valley groundwater basin modeling builds on the scientific investigation report, Hydrogeologic Framework and Groundwater Conditions of the Ararat Basin in Armenia, prepared by the United States Geological Survey (USGS).

The cartographic materials of the Atlas are based on the geospatial layers and

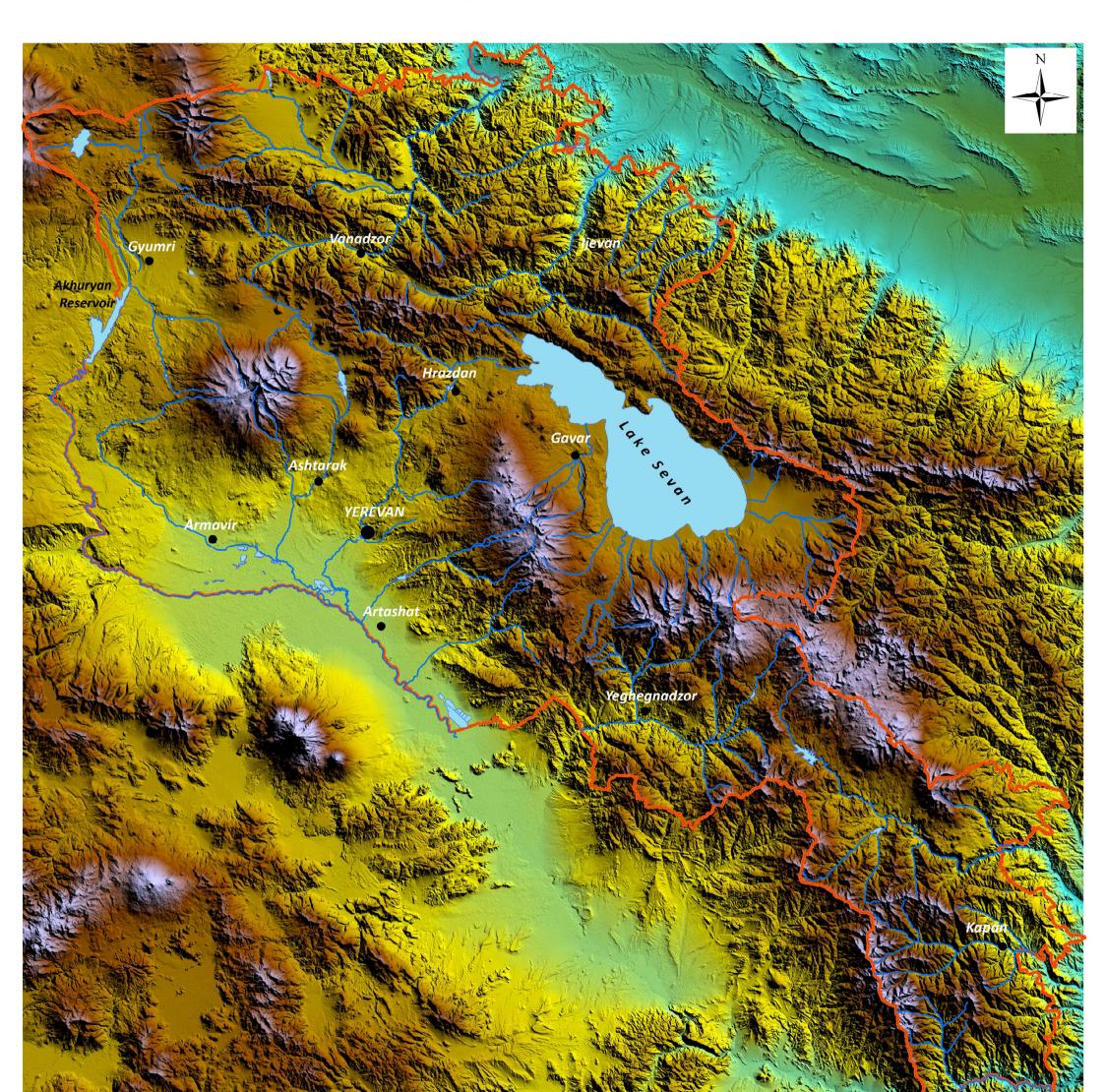
- The Project team customized a Decision Support System (DSS) to conduct quantitative and qualitative assessments of water resources in the Ararat Valley, and climate change impact analysis in the Ararat Valley and its catchment area. The customized DSS is an extension programmed within the geographic information system environment. The extension was developed by the USAID Clean Energy and Water Program in 2013-2015 and was further calibrated for the Ararat Valley and its catchment area in 2016-2020 under the USAID ASPIRED Project.
- The ASPIRED team applied ArcHydro Groundwater Tools to develop the 3-dimensional lithologic model of the Ararat Valley groundwater basin. The model is based on data from the inventory of groundwater wells that was conducted by the ASPIRED Project in 2016, including the geographic coordinates of wells, altitude above sea level, stratigraphy (rock structure, thickness, and depth), and geological structure of rocks.
- The ASPIRED Project used the Groundwater Modeling System (GMS) and MODFLOW modeling tools for constructing the digital groundwater flow model of the Ararat Valley. This model allows assessing the state of aquifers under conditions of groundwater use.
- The Project utilized the Global Digital Elevation Model and Hillshade Image generated based on the National Aeronautics and Space Administration's Shuttle Radar Topography Mission (NASA SRTM) imageries, as well as World Imagery from the Environmental Systems Research Institute (ESRI) for improved visualization of the maps.

The Ararat Valley Atlas consists of 48 thematic maps that are grouped into the following 6 sections:

- General Characteristics of the Ararat Valley: this section presents the Ararat Valley and its catchment area, administrative boundary and population density, topography, and geology of the studied area. Maps are also presented showing land cover and land use classification, water infrastructure and water supply services, as well as networks for monitoring surface and groundwater resources in the Ararat Valley.
- Inventory of Groundwater Wells, Natural Springs and Fish Farms in the Ararat Valley: this section provides baseline data on groundwater use in the Ararat Valley as of 2016, including maps and statistical data on status and purpose of operation of the inventoried wells, condition of the natural springs, and status of the fish farms.

images gathered and stored in the unified Ararat Valley geodatabase. Analytic and cartographic works were implemented using the ASPIRED Project's applied innovative technologies and state-of-art modeling tools. Specific technologies and tools include the following:

- The ASPIRED team applied remote sensing technologies to analyze the Sentinel-2 high resolution satellite imagery of the European Space Agency in order to obtain data on land cover and land use classification in the Ararat Valley. These datasets were further used to determine the annual value of natural surface runoff that originates in the Ararat Valley, using the "precipitation-runoff" curve method.
- Water Balance and Water Supply and Demand Balance of the Ararat Valley: this section of the Atlas presents the multiannual average water balance for the period of 1961-2016 for the Ararat Valley and its catchment area, and annual water balance for the Ararat Valley for 2016. Similarly, it provides data on usage of surface and groundwater resources, and water supply and demand balance for the Ararat Valley in 2016. It also displays data on permitted water use in the Ararat Valley for 2019, and measures taken by the Government of Armenia during 2014-2019 on regulating groundwater use in the Ararat Valley.


- Modeling of the Ararat Valley Groundwater Basin and Assessment of Its State in 2016: this section provides maps on the hydrogeologic structure of the Ararat Valley groundwater basin and boundaries of pressure zones, as well as the three-dimensional model of the groundwater basin with its seven main hydrogeologic units. It presents the calculated values of the total volume of each hydrogeologic unit, total pore volume of the water bearing units, and the values of natural and elastic groundwater reserves in the Ararat Valley Groundwater Basin. The section also displays the values of natural groundwater resources recharging the groundwater basin, volume of usable groundwater resources or sustainable rate of groundwater abstraction for the year 2016 as estimated using modeling tools.
- Assessment of Water Resources Quality in the Ararat Valley: this section presents the results of assessment and classification of the surface and groundwater resources quality, using monthly data from hydrochemical monitoring of water resources in the Ararat Valley for the period of 2016-2017 conducted by the Hydrometeorology and Monitoring Center (HMC) of the ME.
- Assessment of the Impact of Climate Change on the Ararat Valley Catchment Area: this section presents the dynamics of the changes of main climatic elements in representative meteorological and hydrologic observation

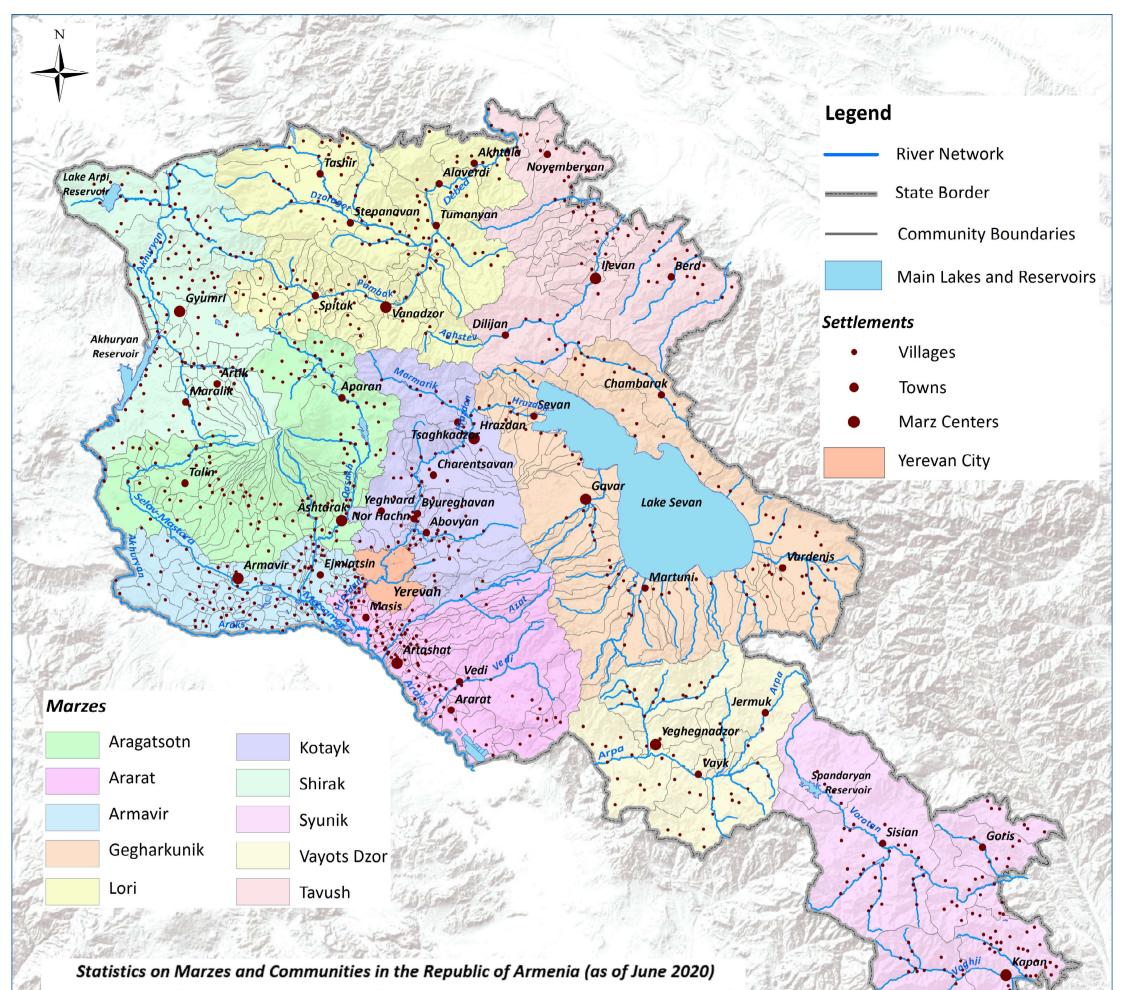
posts in the Ararat Valley for the analysis period of 1991-2016, in comparison with the established baseline period of 1961-1990. It also presents the projected changes in average annual values of air temperature, atmospheric precipitation, and natural surface flow for the periods of 2011-2040, 2041-2070, and 2071-2100 under two scenarios of CO₂ emissions as recommended by the Intergovernmental Panel on Climate Change (IPCC): Representative Concentration Pathway scenarios 8.5 and 6.0 (RCP 8.5 and RCP 6.0).

The Ararat Valley Atlas was prepared by the ASPIRED Project Specialists Aram Gevorgyan, Data Management and GIS Specialist, Benyamin Zakaryan, Hydrologist, Lilith Harutyunyan, Basin Management Planning and Environmental Specialist, along with Tom Sheng, President of CADI Inc. In addition, Nara Mnatsakanyan and Inga Siradeghyan, interns of the ASPIRED Project and students of the Master's program on Cartography and Geomorphology in the Faculty of Geography and Geology of the Yerevan State University, contributed to preparing this Atlas.

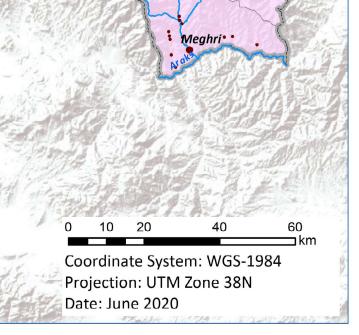
The Ararat Valley Atlas was prepared in both Armenian and English languages and is available to all interested entities in both paper and electronic formats. The digital version of the Atlas is available at the webpages of the USAID's Development Experience Clearing House at <u>https://dec.usaid.gov</u> and ME at <u>http://env.am/</u>.

Republic of Armenia

General Information

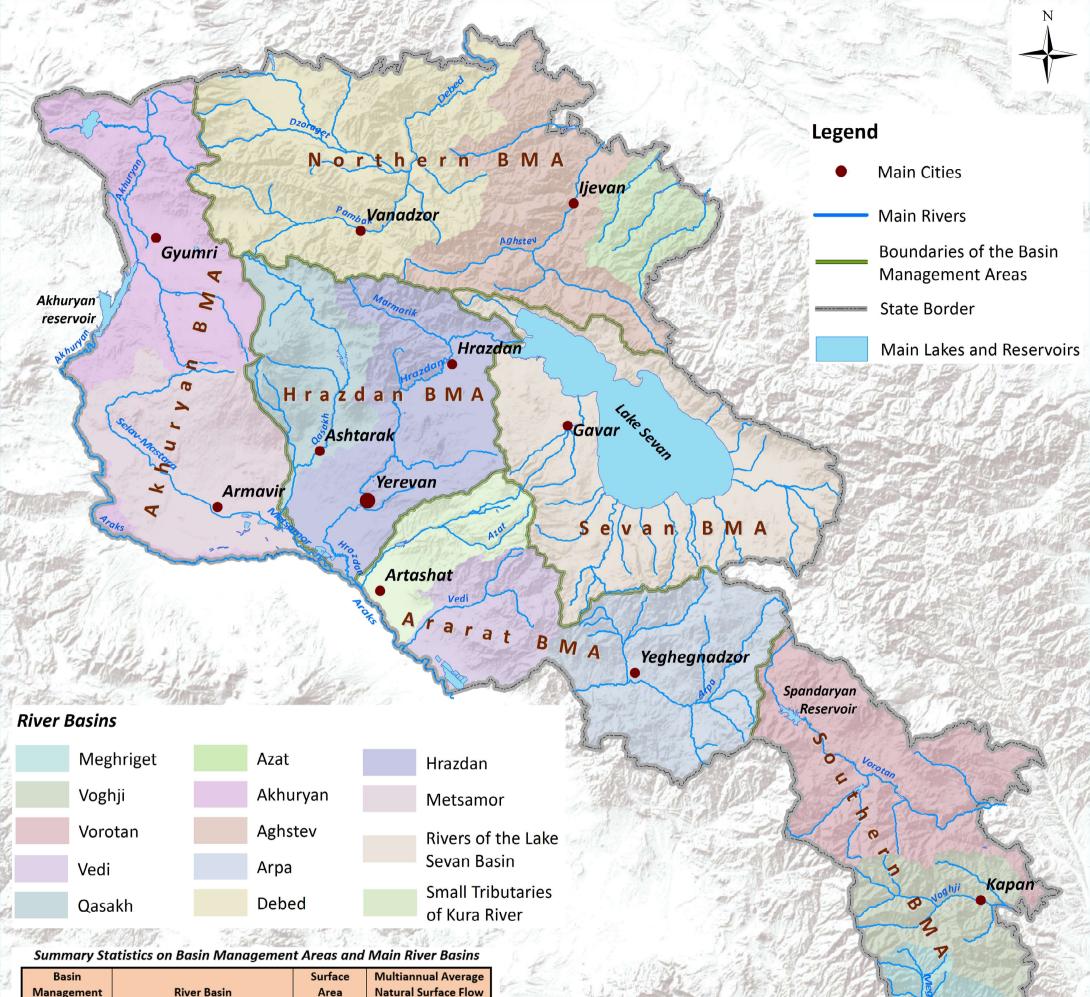

The Republic of Armenia is a landlocked country located in the north-eastern part of the Armenian Highlands, in the Southern Caucasus region. Average elevation above sea level is 1,800 m. The highest peak is Aragats Mountain (4,090 m). The lowest point is Debed river canyon (375 m). Ethnic breakdown: Armenians (96%), Russians (1%), Yezidis, Kurds, Assyrians, Greeks, Ukrainians, Jews. Religion: Christianity (Armenian Apostolic Church), professed by the vast majority of the population.

Legend

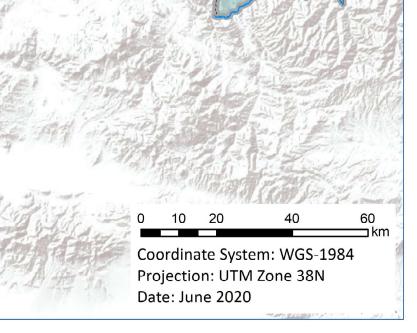


0 10 20 40 60 km Coordinate System: WGS-1984 Projection: UTM Zone 38N Date: June 2020

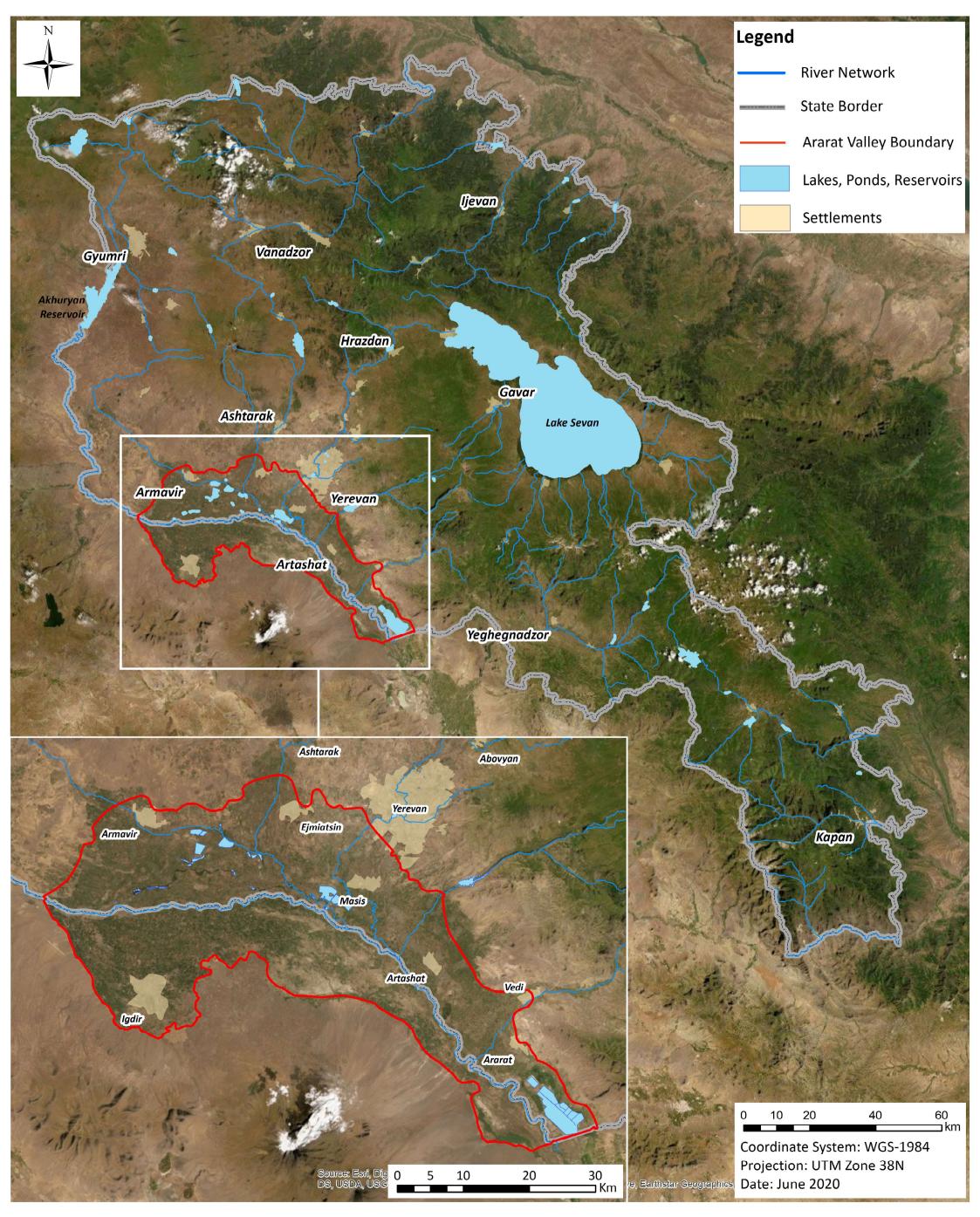
Administrative Map of the Republic of Armenia



Mara	Surface Area		Number of Communities			
Marz	km ²	% of Total	Urban	Rural	Total	% of Total
Aragatsotn	2,752	9.3	3	69	72	14.4
Ararat	2,095	7.0	4	91	95	19.0
Armavir	1,232	4.1	3	94	97	19.4
Gegharkunik	5,326	17.9	5	50	55	11.0
Lori	3,804	12.8	8	48	56	11.2
Kotayk	2,094	7.0	7	35	42	8.4
Shirak	2,680	9.0	3	39	42	8.4
Syunik	4,506	15.1	5	3	8	1.6
Vayots Dzor	2,317	7.8	3	5	8	1.6
Tavush	2,725	9.2	4	20	24	4.8
Yerevan	212	0.7	1	0	1	0.2
Total	29,743	100	46	454	500	100


Qajaran

Basin Management Areas and Main River Basins of the Republic of Armenia


Basin		Surface	Multiannual Average
Management	River Basin	Area	Natural Surface Flow
Area		(km²)	(million m ³ /year)
Northern	Debed	3,888	1,203
	Aghstev	2,416	445

	Small tributaries of Kura River	793	199
Subtotal		7,097	1,847
Irazdan	Qasakh	1,389	329
	Hrazdan	2,600	733
	Subtotal	3,989	1,062
evan	Rivers of the Lake Sevan basin	4,739	265
	Subtotal	4,739	265
Ararat	Azat	955	402
	Vedi	1,129	167
	Arpa	2,306	723
	Subtotal	4,390	1,292
Akhuryan	Akhuryan	2,784	701
	Metsamor	2,245	778
	Subtotal	5,029	1,479
outhern	Vorotan	2,597	764
	Voghji	1,241	429
	Meghriget	661	102
	Subtotal	4,499	1,295
	TOTAL	29,743	7,240

Arak

Satellite Image of the Republic of Armenia and Ararat Valley

Section 1. General Characteristics of the Ararat Valley

The Ararat Valley is an inter-mountain depression of the Armenian Highlands. It lies in midstream of the Araks River, between Haykakan Par and Urts mountain ridges, Geghama volcanic mountains, and Ararat (5,165 meters above sea level) and Aragats (4,095 meters above sea level) volcanic massifs. The Araks River divides the Ararat Valley into two sides: the right bank (Turkish territory) and left bank (Armenian territory).

In the Republic of Armenia, the Ararat Valley lies in the midstream section of the Araks River, extending from northwest to southeast approximately 120 km in length and ranging between 10-25 km in width. The valley is located at elevations ranging from 800 m to 930 m above sea level and occupies an area of about 1,177 km². It is a natural groundwater storage area, with water entering into the aquifers from the surrounding Ararat and Aragats mountains, and from the Geghama and Haykakan Par mountain ridges.

According to its geomorphology, the Ararat Valley represents an intermountain depression associated with the valley of the Araks River and its tributaries - the Akhuryan, Metsamor (Sevjur), Qasakh, Hrazdan, Azat, Vedi Rivers in the territory of Armenia, as well as Kars River basin and the area of Igdir Province in the Turkish territory. The ancient buried valleys of those rivers, covered by the volcanic lava and sub-surface deposits of modern drainage networks (rivers), serve as the flow paths of groundwater entering the Ararat groundwater basin. The surface area of the Ararat Valley catchment area comprises 21,187 km², out of which 11,075 km² is in the territory of Armenia.

The geologic setting of the Ararat Valley has formed as a result of the eruption of the upper and lower quaternary basaltic lavas. The area is characterized with limnofluvial and effusive water bearing formations, with thickness reaching up to 500 meters. Beneath those formations, a folded non-water bearing formation is represented by Paleozoic and Mezocainosoic sandstone, clay and carbonate rocks. The Ararat Valley is currently filled with alluvial, proluvial, and lacustrine sediments. The Ararat Valley groundwater basin contains geologic sub-layers made of dense clay, gravel, sand, volcanic basalt and andesite deposits.

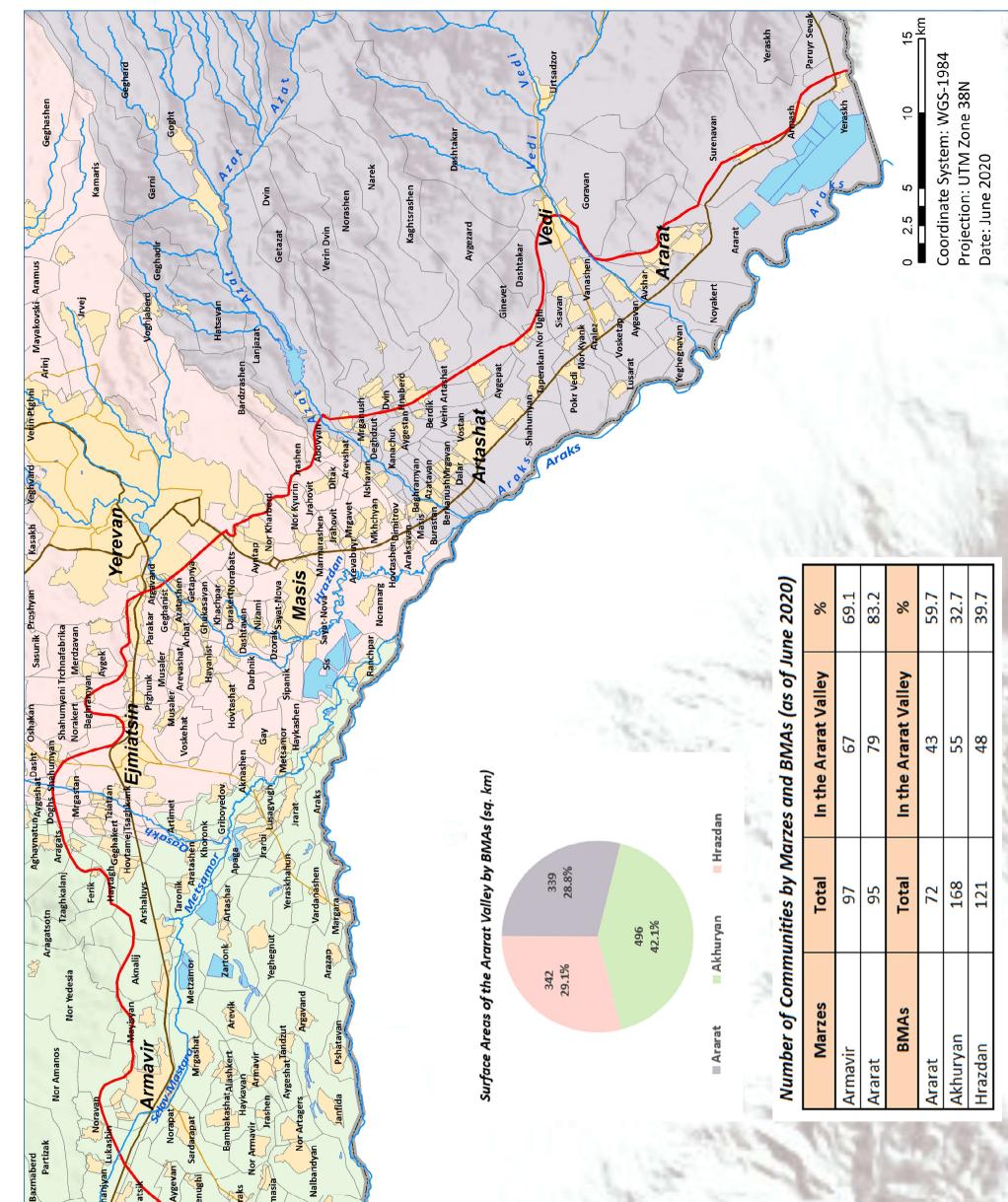
Highly fractured volcanic rocks and their porous subtypes cover over 90% of the Ararat Valley catchment area. Due to fractures and pores of the rocks, a significant portion of atmospheric precipitation and surface runoff in the catchment area infiltrates the aquifers. A portion of this infiltrated water is discharged in the form of natural springs in the mountainous and premountainous areas of the Ararat Valley catchment area at a rate ranging from 10-1,000 liters per second or higher. These springs are typically equipped with catchment structures and are used to supply drinking water to the households in the area. The rest of the infiltrated water enters the Ararat Valley from the pre-mountainous zone of the catchment area as transit flow following old under-lava riverbeds.

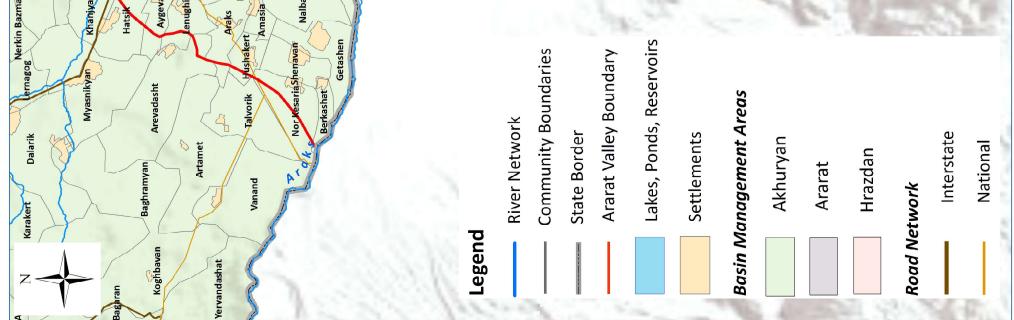
The Ararat Valley aquifers are mainly fed by the upward discharge of water from the second confined aquifer, which is formed by volcanic rocks. Historically, significant reserves of groundwater have been formed here, some of which are discharged due to high hydraulic head in the Ararat Valley, forming the Metsamor River, Sis, Kapuyt Lake, Artashat and other natural springs. The rest evaporates and flows out of the boundaries of the depression.

The Ararat Valley and the premontane zone of its catchment area are the most densely populated areas of Armenia. About 50% of Armenia's groundwater resources of strategic importance are in the Ararat Valley groundwater basin. The boundaries of the Ararat Valley nearly match those of the Armavir and Ararat Marzes of Armenia.

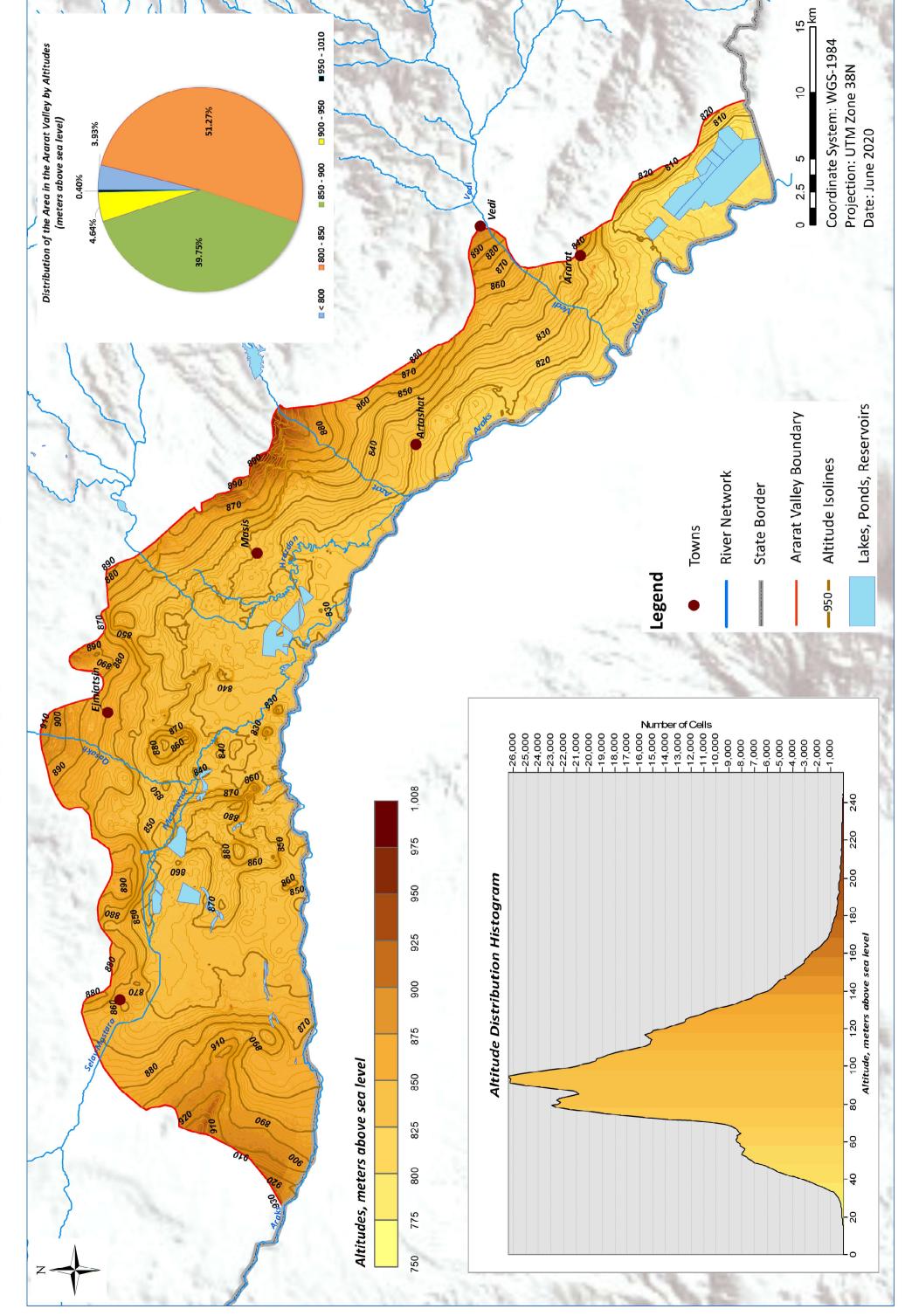
While the Ararat Valley accounts for only 4% of the territory of Armenia, it represents most of the country's arable land. The soil is fertile, and climatic conditions are favorable for crop production. The Valley has specialized in high-value vegetable and fruit production, wine production, and to a lesser extent, the raising of livestock and poultry. Both surface and groundwater resources are used for irrigation purposes.

Before the 1990's, only the first confined aquifer was used for irrigation, while the second aquifer was exclusively used to supply drinking water. At that time, water use and both aquifers were regularly monitored. By 1973, regular monitoring results demonstrated a trend of reduced discharge from selfflowing wells in the Ararat Valley. In the 2000's, fish farms began using water from the second aquifer to breed trout and Siberian sturgeon.

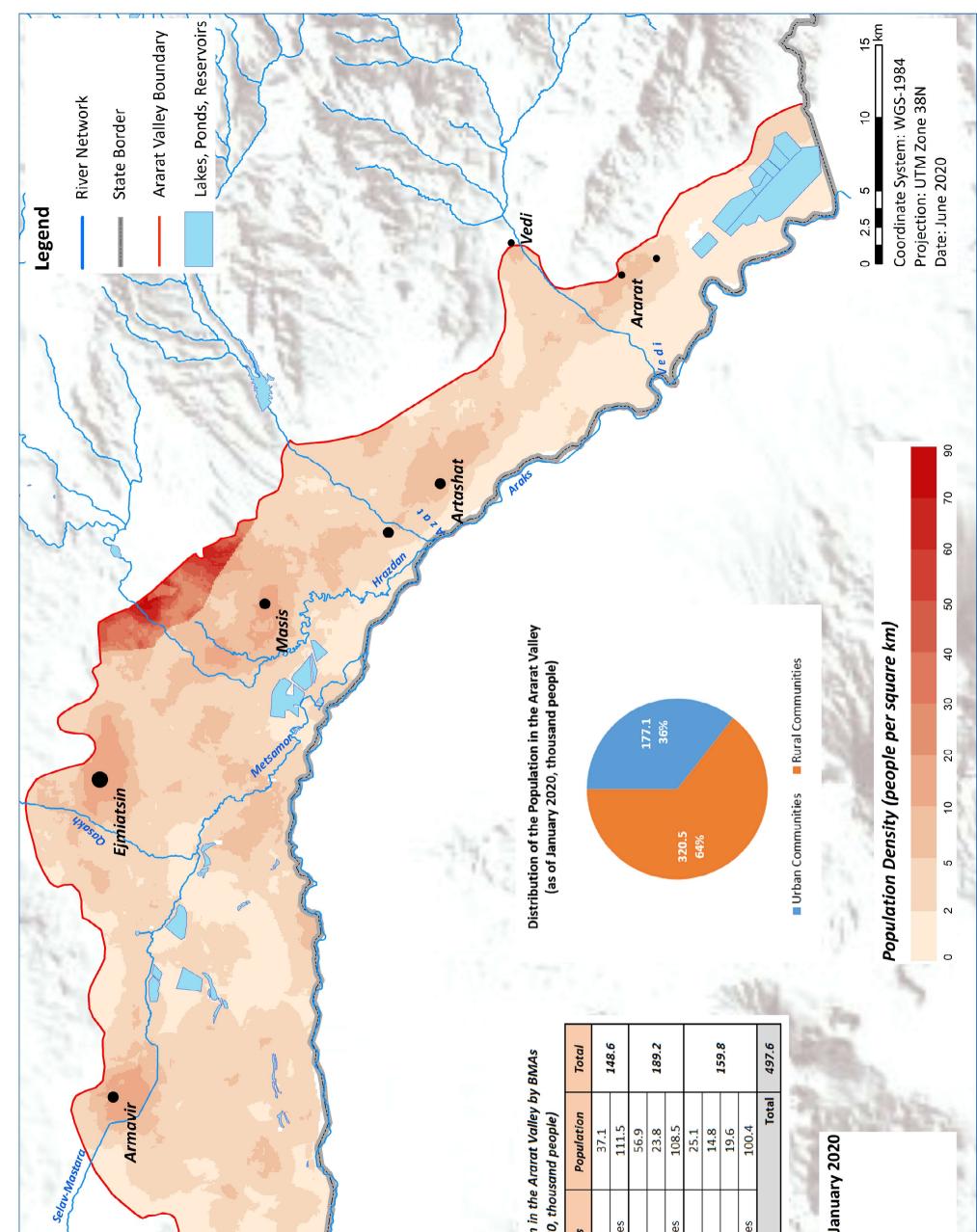

Maps included in this section of the Atlas present the catchment area, administrative boundary, population density, topography, and geology of the Ararat Valley. Additional maps show land cover and land use classification, water infrastructure and water supply services, as well as networks for monitoring surface and groundwater resources in the Ararat Valley. All maps contain relevant statistical data.

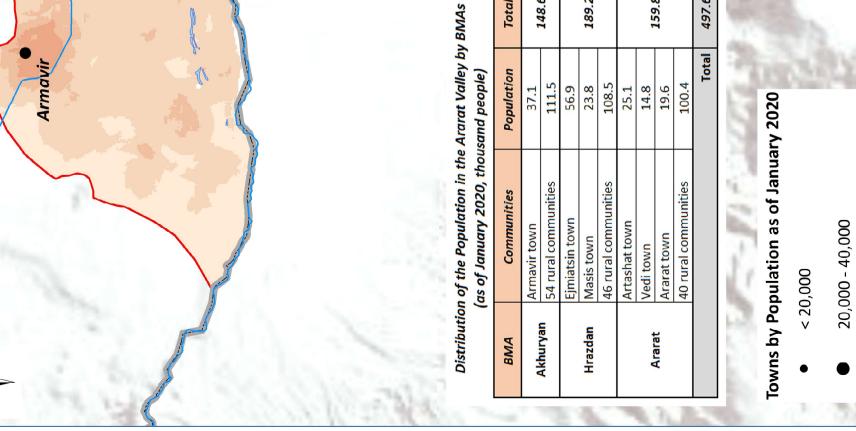

21,187 6,789 1,389 3,497 955 964 Пkm 2,581 2,245 2,767 Total 42 Metsamor Akhuryan Summary Statistics on River Basins of the Ararat Valley Catchment Area Coordinate System: WGS-1984 Hrazdan Qasakh **River Basins** Kars Igdir Projection: UTM Zone 38N Date: June 2020 Azat Vedi Within the boundaries of the Ararat Valley 195 154 0 0 318 489 **1,177** 28 21 0 Surface Area (km²) 14 Total Surface Area of the Ararat Valley Catchmen Outside of the Ararat Valley 760 810 1,368 1,756 6,789 3,497 2,263 2,767 Surface Area of the Ararat Valley in Armenia 0 **River Basin** Metsamor Akhuryan Hrazdan Qasakh Hrazdan Azat Vedi Kars lgdir Yerevan # HIOZOGU c oc Ś 01 Ashtarak Artash Armavi Gyumri Akhuryan Reservoir Akhuryan Lake Arpi Reservoir Kars

Catchment Area of the Ararat Valley

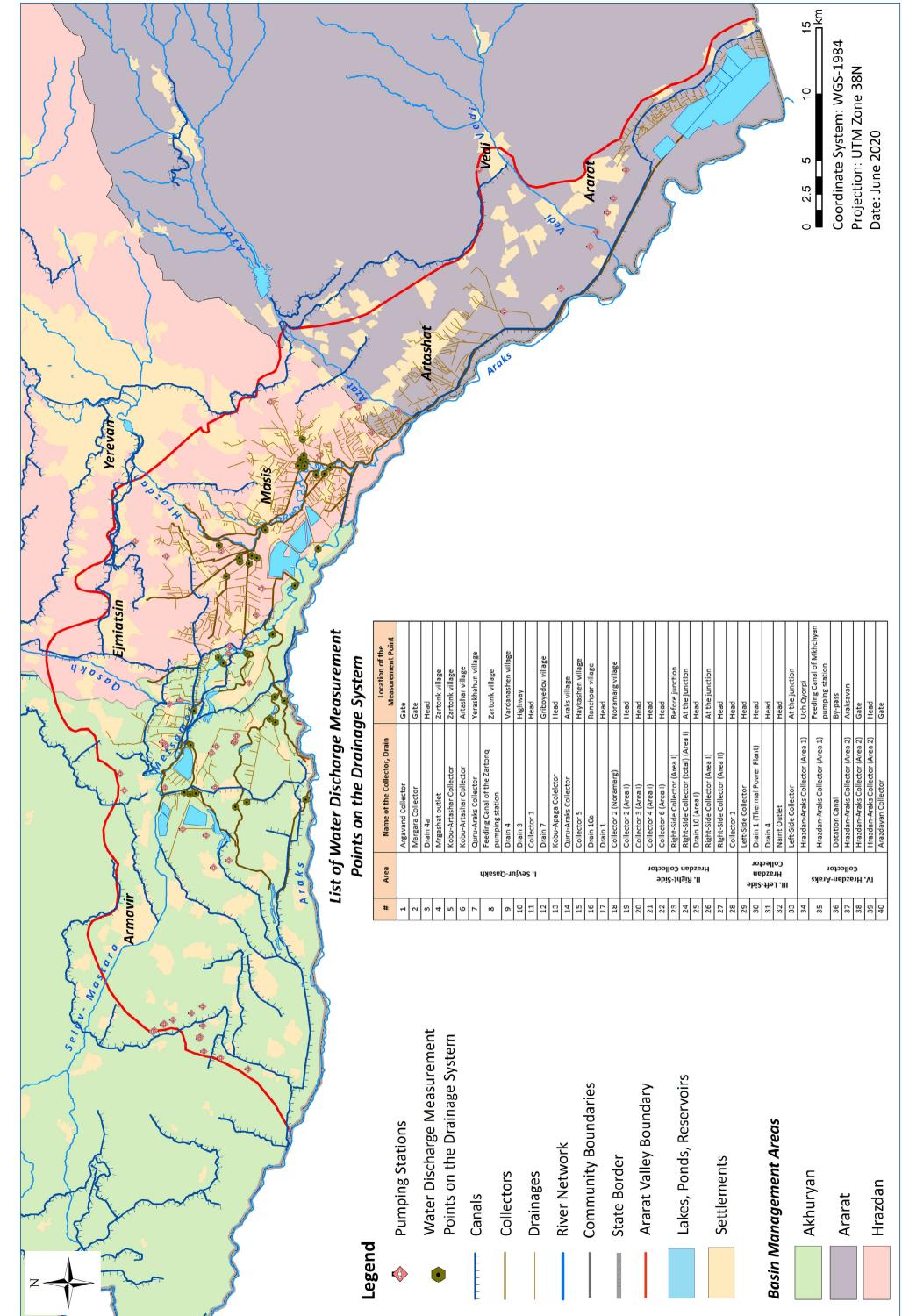


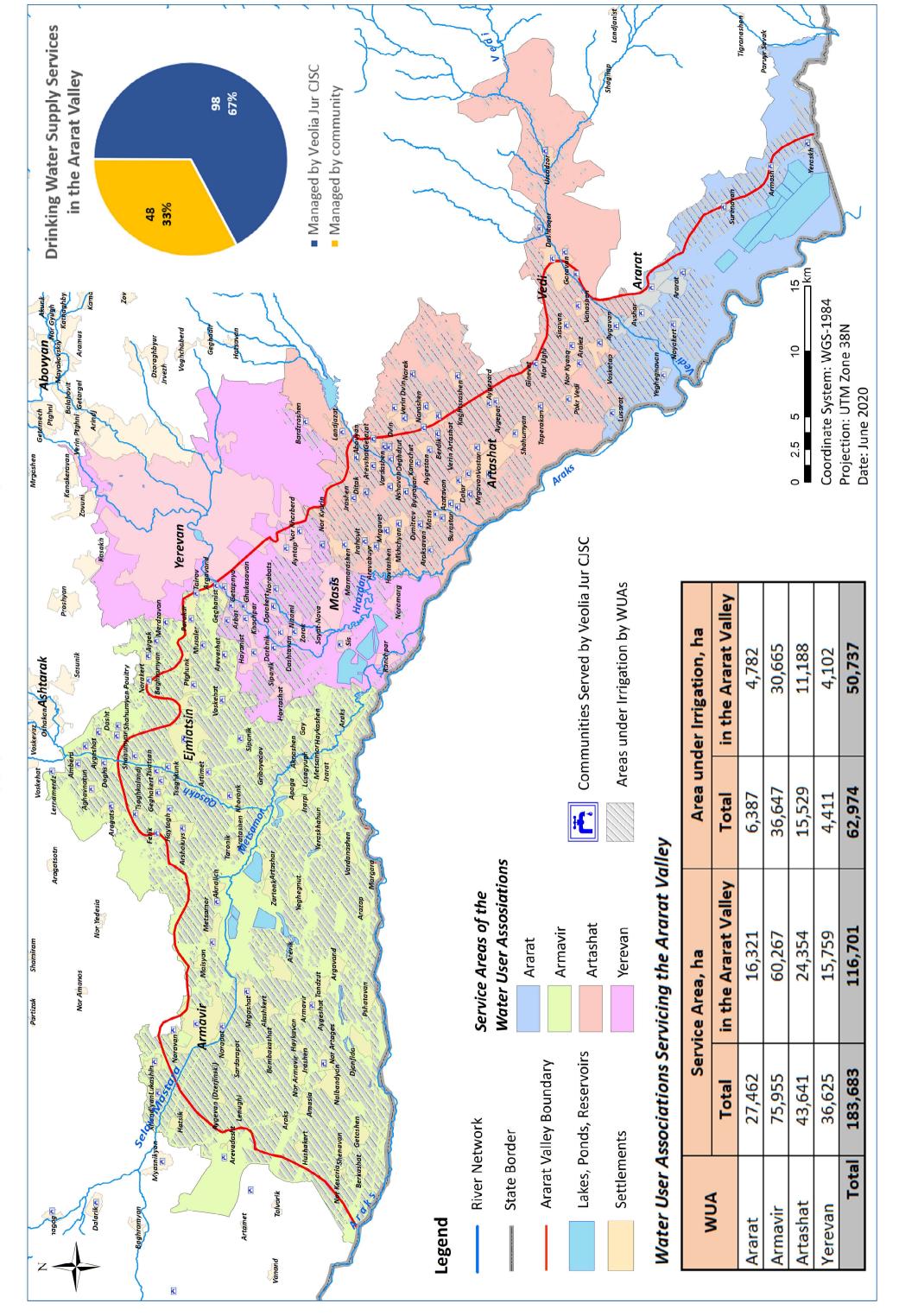
Administrative Map of the Ararat Valley



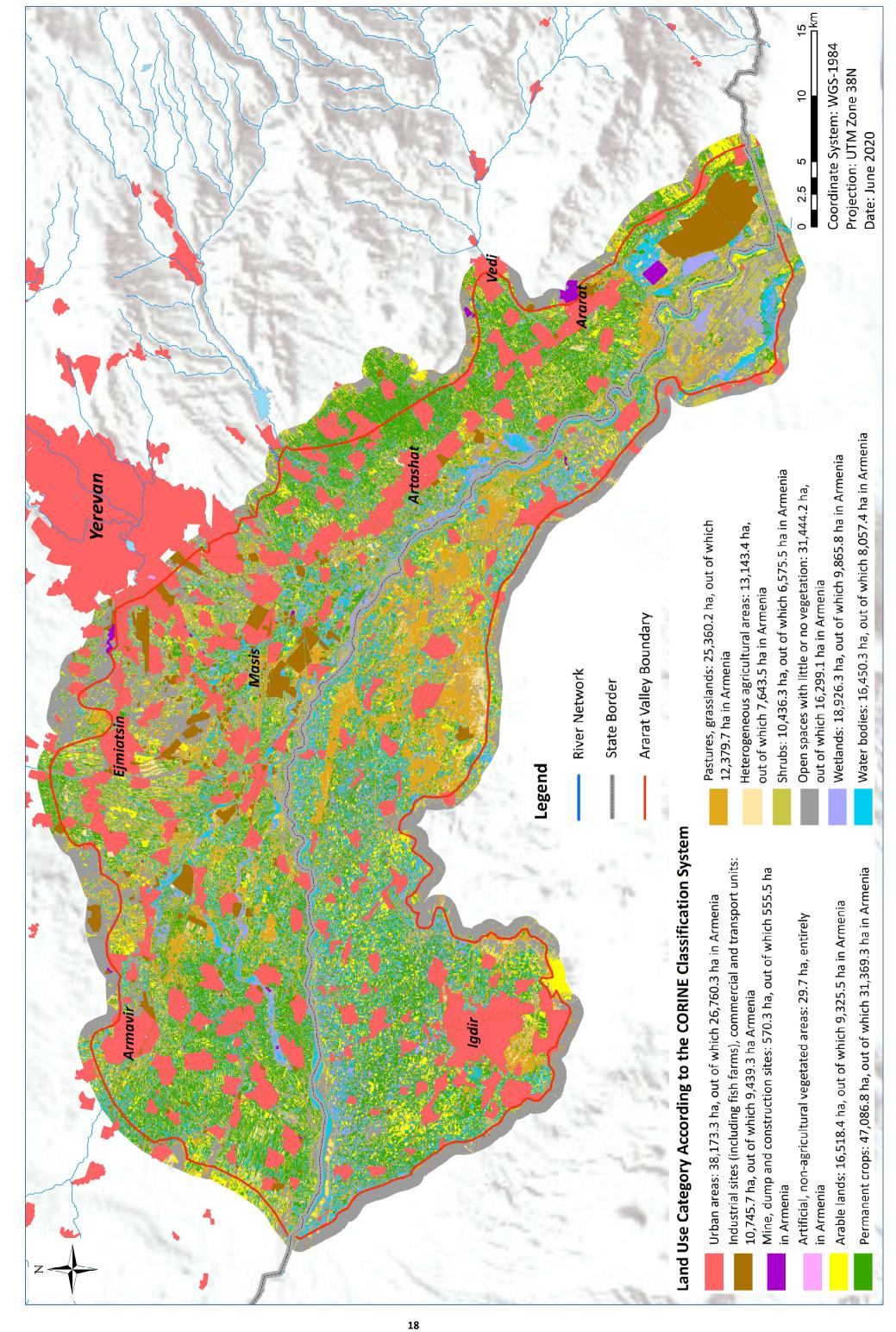

Topography of the Ararat Valley

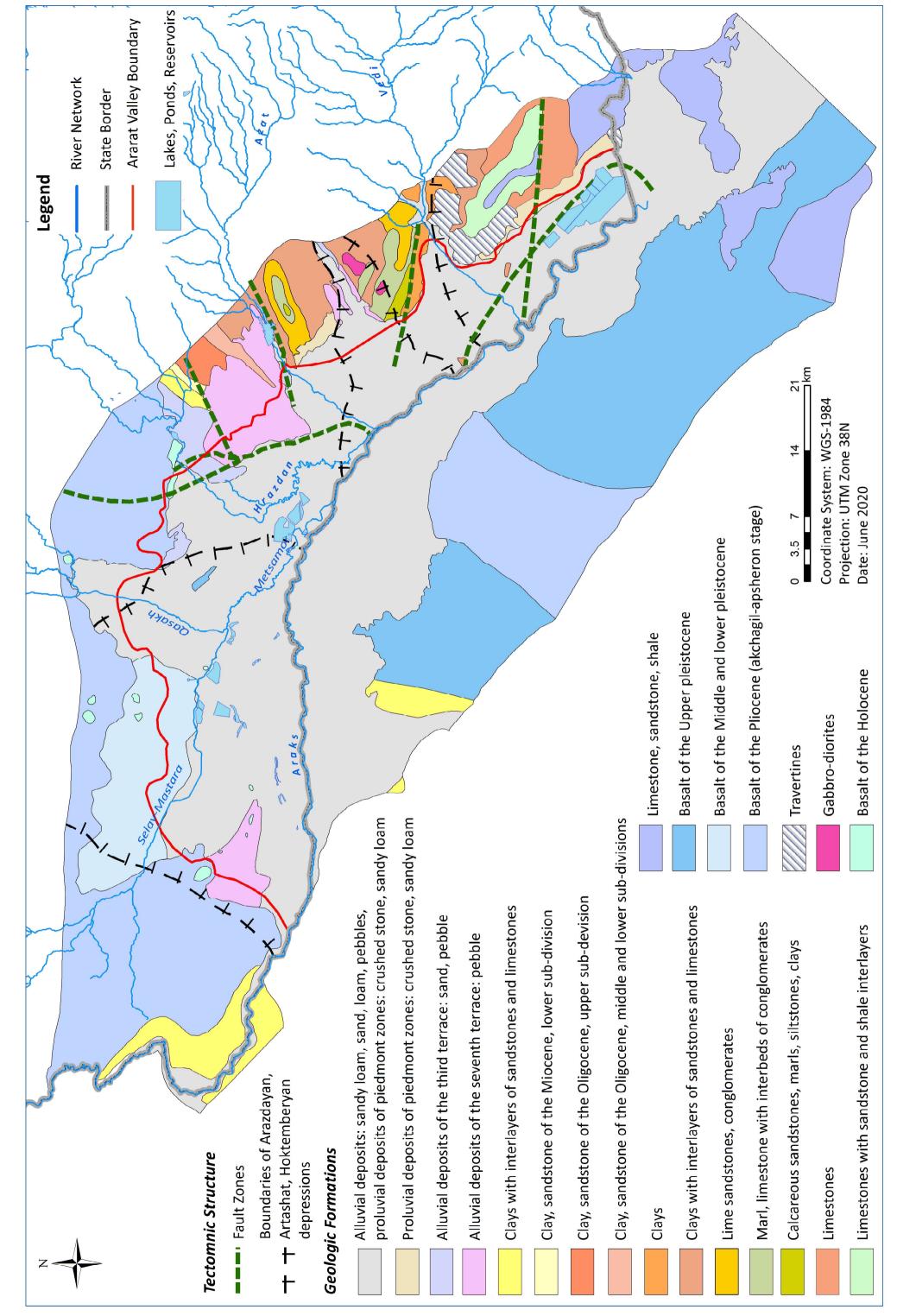
Population Density in the Ararat Valley


Z



> 40,000


Water Infrastructure in the Ararat Valley


Water Supply Services in the Ararat Valley

Land Cover/Use Map of the Ararat Valley

