«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ

ปับนุบนุนุน บริกาติธิกา บนุวับนุบนราช ติการเนรกิธิเก นกรนุบธิรถาบังธิกา (บติน) บักกับนุรกิษุบธิกา บันโบนุจุกิซ

SUOPHU

01202433

พ. คนาานบนายนบ

ԵՐԵՎԱՆ - 2020

Կատարողների ցանկ` Անկախ փորձագետ` – Ա. Սահակյան "Էկո ցենտր" հաշվարկի կատարող` «Էկոբարիք-աուդիտ» ՍՊԸ

นบบกรนยคน

Ուսումնասիրության օբյեկտ են հանդիսանում «ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ գործունեության ընթացքում առաջացած արտանետումները։

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ հիմնականում զբաղվում է բազալտի հանքավայրի շահագործման, բետոնի արտադրության և խձի ստացման աշխատանքներով։

Ձեռնարկությունն ունի երկու արտադրական հրապարակներ` U/Հ – N 1, 2

- **Ա/Հ - N1** որը ունի մթնոլորտն աղտոտող 1 աղբյուր, որից արտանետվում է 1 վնասակար նյութ։

Արտանետումների ընդհանուր քանակը կազմում է 55.0 տ/տարի, այդ թվում`

Փոշի անօրգանական(SiO ₂ 20 -70%)

- 55.0տ./տարի

Հաշվարկները կատարվել են 150 000 մ³ տարեկան արդյունահանվող բազալտի զանգվածի համար։

- **Ա/Հ-2** որը ունի մթնոլորտն աղտոտող 5 աղբյուրներ, որոնցից արտանետվում են 3 վնասակար նյութեր։

Արտանետումների ընդհանուր քանակը կազմում է **49.261 տ/տարի**, այդ թվում`

Փոշի անօրգանական (SiO₂ –20-70%)

- 48.0 տ/տարի

Ածխածնի օքսիդ

- 0.940 m/mwnh

Ազոտի օքսիդներ *(երկօքսիդի հաշվարկով)*

- 0.321 m/mwnh

Հաշվարկները կատարվել են տարեկան 200 0000° բետոնի արտադրության և 100 000 մ³/տարի գագի ծախսի համար։

Գումարային հատկության նյութեր չկան։

ՍԹԱ նորմատիվներին հասնելու ժամկետը համարվում է հաստատման պահից։

Ընկերության արտանետումները չեն գերազանցում այդ վնասակար նյութերի համար սահմանված չափանիշները, այդ պատձառով արտանետումների քանակն իջեցնող միջոցառումների պլան չի նախատեսվում։ Աղտոտող նյութերի գետնամերձ խտությունները չեն գերազանցում համապատասխան նյութերի ՍԹԽ, դրա համար անհրաժեշտ ծախսեր չի նախատեսված։

- Ա/Հ- N 1 արտանետումների հետևանքով շրջակա միջավայրին հասցվելիք վնասի մեծությունը կազմում է **2200000**դրամ, հաշվարկը տես հավելված 2-ում։
- Ա/Հ- N 2 արտանետումների հետևանքով շրջակա միջավայրին հասցվելիք վնասի մեծությունը կազմում է 1939810դրամ, հաշվարկը տես հավելված 2-ում։

- «ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ փաստացի արտանետումների ցուցանիշների հիման վրա հաշվարկվել է օդի պահանջվող օգտագործումը (ՕՊՕ) (հավելված-1), որի արդյունքում պարզվել է, որ`
- **Ա/Հ N -1** արտանետումները մեկ տարում գերազանցում են երկու միլիարդ մ³ չափանիշը (**550.0**մլրդմ³/տարի), ուստի արտանետման չափաքանակները կարող են սահմանվել ՍԹԱ նախագծի հիման վրա։
- **U/Հ N 2** արտանետումները մեկ տարում գերազանցում են երկու միլիարդ մ³ չափանիշը (**488.338** մլրդմ³/տարի), ուստի արտանետման չափաքանակները կարող են սահմանվել ՍԹԱ նախագծի հիման վրա։

Աշխատանքի նպատակն է մշակել մթնոլորտն աղտոտող վնասակար նյութերի սահմանային թույլատրելի արտանետումների (ՍԹԱ) նորմատիվների նախագիծը։

ՄԹԱ նորմավորման աշխատանքների իրականացման համար հիմք է հանդիսացել ՀՀ կառավարության 27.12.2012թ. «Մթնոլորտային օդն աղտոտող նյութերի սահմանային թույլատրելի արտանետումների նորմատիվների մշակման ու հաստատման կարգը սահմանելու և Հայաստանի Հանրապետության կառավարության 1999 թվականի մարտի 30-ի N 192 և 2008 թվականի օգոստոսի 21-ի N 953-Ն որոշումներն ուժը կորցրած Ճանաչելու մասին» թիվ 1673-Ն որոշման մեջ փոփոխություններ և լրացումներ կատարելու մասին N 62-Ն որոշումները։

Աշխատանքում ի մի են բերվել ձեռնարկության գործունեությունից առաջացող մթնոլորտն աղտոտող աղբյուրների արտանետումների որակական և քանակական բնութագրերը։

Ներկա աշխատանքում բերված են աղտոտման աղբյուրների տեխնիկական հետազոտման արդյունքների տվյալները՝ տեքստային և աղյուսակային տեսքով։

Կատարված է մթնոլորտն աղտոտող նյութերի ցրման հաշվարկը։

PN4UUAU4NHB3NHU

U ununug	իա
-----------------	----

1. Ընդհանուր տեղեկություններ կազմակերպության մասին	- 6
2. Տնտեսվարող սուբյեկտի բնութագիրը որպես մթնոլորտային	
օդն աղտոտող աղբյուր	- 11
3. Մթնոլորտ արտանետվող աղտոտող նյութերի անվանացանկը	- 14
4. Զարկային արտանետումներ ունեցող աղբյուրների թվարկումը եվ բնութագիրը	- 15
5.ՍԹԱ նորմատիվների հաշվարկի համար աղտոտող նյութերի պարամետրերը	- 16
6.ՍԹԱ նորմատիվների /չափաքանակների hաշվարկի hամար	
անհրաժեշտ ելակետային տվյալները	- 20
7. Վնասակար նյութերի արտանետումների ցրման հաշվարկը	- 21
8. Վնասակար նյութերի ցրման հաշվարկի հակիրՃ արդյունքները	- 22
9. Մթնոլորտ ամենամեծ աղտոտումներ առաջացնող աղբյուրների ցուցակը	- 23
10. UԹԱ նորմատիվներ hասնելու միջոցառումների ծրագիր	- 24
11. Անշարժ աղբյուրներից աղտոտող նյութեր մթնոլոր՝ արտանետելու	
նորմատիվներ/չափաքանակներ	- 25
12. Անբարենպաստ կլիմայական պայմանների ժամանակ արտանետումների	
կարգավորման միջոցառումներ	- 26
13.Արտանետումների վերահսկման և ՍԹԱ կատարման նպատակով	
նախատեսվող և իրականացվող միջոցառումներ	- 27
14. Օգտագործված գրականություն	- 32
Հավելվածներ`	
- ՕՊՕ-ի Հաշվարկը ըստ տվյալ ձեռնարկության-հավելված-1	- 28
- Վնասի հատուցման հաշվարկը -հավելված-2	- 29
Ձեռնարկության պլան-սխեման	
Ռելիեֆի գործակիցը	
Կլիմայական տվյալներ	
Ֆոնային աղտոտվածության տվյալներ	
Մեքենայական հաշվարկներ	

1. $LU\mathcal{H}UUHP$ SUULUHP SUULUH

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ հիմնականում զբաղվում է բազալտի հանքավայրի շահագործման, բետոնի արտադրության և խձի ստացման աշխատանքներով։

Արտադրական բոլոր գործողությունները կատարվում են երկու տարբեր տարածքներում` արտադրական hրապարակ N 1 և N 2:

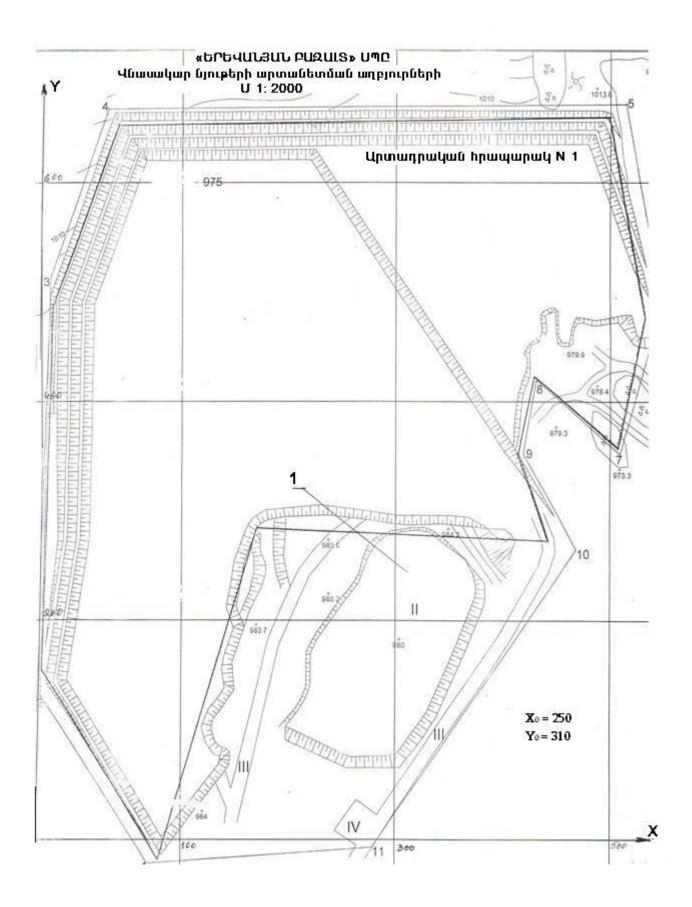
Արտարդրական հրապարակ N 1 - կատարվում է Սպանդարյանի բազալտի հանքավայրի շահագործման աշխատանքեր, բացահանքը գտնվում է Երևան քաղաքի Մալաթիա - Սեբաստիա համայնքում, Հաղթանակ գյուղից 2.0 - 2.5կմ. դեպի հյուսիս արևմուտք և Սպանդարյան գյուղից 2.0 կմ արևմուտք։

Ունեցել է շրջակա միջավայրի վրա ազդեցության փորձաքննության եզրակացություն` РФ-04, տրված 16.01.2004թ.

Ոենի նոր շրջակա միջավայրի վրա ազդեցության փորձաքննության եզրակացություն` РФ-85, տրված 20.11.2014թ. Սպանդարյանի բազալտի հանքավայրի ընդլայնման արդյունահանման նախագծի վերաբերյալ։

Արտարդրական հրապարակ N2 - հիմնականում կատարվում է խձի մանրեցման և բետոնի արտադրության ինչպես նաև պեմզաբլոկի պատրաստման աշխատանքներ, այն գտնվում է Երևան քաղաքի Մալաթիա - Սեբաստիա համայնքում, քաղաքի հարավարևմտյան մասում, Հաղթանակ գյուղի Սպանդարյանի արտադրական հանգույցում, 2.5 կմ հեռու բնակելի տարածքից։

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ պատկանող երկու արտադրական հրապարակները գտնվում են իրարից 2 կմ հեռավորության վրա։


Տեղադրված են երկու արտադրատարածքների տեղանքի իրավիՃակային քարտեզները, որտեղից երևում է որ մոտակայքում բացակայում են նախադպրոցական, դպրոցական, կազմակերպություններ, հիվանդանոցներ, սննդի օբյեկտներ, անտառային, գյուղատնտեսական մշակահողեր և այլն չկան։

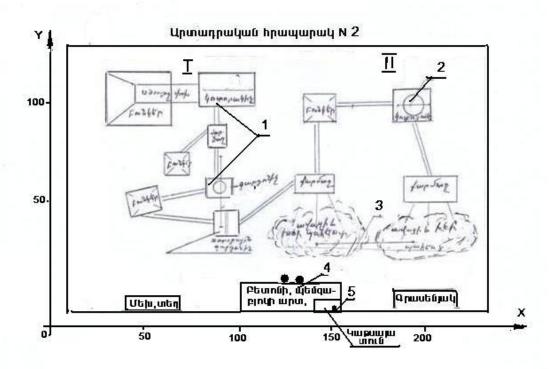
Համաձայն CH-245-71 արտադրատարածքը 300մ սանիտարա-պաշտպանական գոտով պատկանում են 3 դասին։

Պետ. ռեգիստրի գրանցման համարը` 271.110.00838, տրված 13.02.1996թ.

Ձեռնարկության հասցեն է`

ք.Երևան, գ. Հաղթանակ, Սպանդարյանի արտադրական հանգույց

Տեղանքի իրավիձակային քարտեզ «ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ


U 1 : 5000

Սպանդարյանի բազալտի հանքավայր

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ Վնասակար նյութերի արտանետման աղբյուրների Մ 1։ 1000

Տեղանքի իրավիձակային քարտեզ «ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ

U 1 : 5000

Արտարդրական հրապարակ N 2

Քետոնի և խձի մանրեցման արտադրամասը

2. รบรษบนนากา บกเครษนรห คบกเลนฉหาย กาๆษบ บลบกเการนรหบ 0าบ นารกรกา นาครกหา

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ աշխատանքային գործընթացում մթնոոլրտ արտանետվող վնասակար նյութերի հիմնակա աղբյուր են հանդիսանում՝

Արտարդրական հրապարակ N1 – Սպանդարյանի բազալտի հանքավայրը Արտարդրական հրապարակ N 2 - ԽՃի մանրեցման արտադրամասը

- Քետոնի, պեմզաբլոկի արտադրամասը
- Կաթսայատունը

Արտադրության բնութագիրը`

- Արտարդրական հրապարակ N 1 - Սպանդարյանի բազալտի հանքավայրի ժամանակ են շահագործման հանույթային աշխատանքները կատարվում հորատապայթեցման եղանայով, օգտագործելով ամոնիտ տիպի պայթուցիկ նյութ: Պայթեցման աշխատանքների հետևանքով մթնոլորտ է արտանետվում` անօրգանական փոշի, որոնք հաշվարկվել են որպես զարկային արտանետումներ և բերված են աղյուսակ 2-ում։ Պայթեցման աշխատանքների հետևանքով մթնոլորտ է արտանետվում նաև ազոտի և ածխածնի օքսիդները, որոնք կազմում են չնչին արտանետումներ, այդ ընդգրկվել։ Իսկ նախնական փխրեցումը պատՃառով ţι հաշվարկներում չեն կատարվում են, հորատանցքային լիցքերի և հորատասեպային եղանակով հիդրոմուրձի օգնությամբ։

Տարեկան արդյունահանվող բազալտների զանգվածի քանակը կազմում է 150.0հազ.մ³։

Քիչ քանակությամբ արտանետումներ առաջանում են մեխանիզմների և ավտոմեքենաների աշխատանքներից, մեքենաներն աշխատում են դիզելային վառելիքով, որոնց արտանետումները չկարգավորված արտանետման աղբյուրներ են, որոնք ունեն չնչին արտանետումներ, այդ պատՃառով էլ հաշվարկներում չեն ընդգրկվել։

Այս գործընթացներում առաջանում է փոշի, որի մի մասը մեքենաների շարժումից, քամու կողմից տարվելով, դառնում են մթնոլորտային արտանետում։ Փոշու արտանետումները մեղմացնելու և նվազագույնին հասցնելու համար կատարվում է ջրցանման աշխատանքներ։

Բաց հանքի շահագործման ժամանակ առաջացած թափոնները և մակաբացման ապարները հեռացվում են մեքենաներով դեպի ներքին լցակույտեր թափոնների կուտակման հրապարակ։ Նշված աշխատանքների ընթացքում արտանետվում է անօրգանական փոշի N 1 աղբյուրից։

- *Արտարդրական Իրապարակ N 2 -* Բազալտի բեկորները տեղափոխվում են ջարդման, տեսակավորման կայանք, որտեղ տեղադրված է քարի ջարդման և տեսակավորման երկու հանգույցներ։
- *Առաջին հանգույցում* հումքը լցվում է բունկերներ, որտեղից ձկուն սնուցիչների օգնությամբ տրվում է առաջնային ջարդման ՍՄԴ - 1200x1500 տիպի ծնոտային ջարդիչով մանրեցվում է, այնուհետև տեղափոխվում է ժապավենային փոխադրիչներով ԿՕԴ-1750տիպի կոնային ջարդիչ, վերջնական մանրեցման։ Զարթիչների բացթողման ձեղքերի փոփոխմամբ կարգավորվում է անհրաժեշտ քանակի արտադրատեսակների ելքը։ Այնուհետև մանրեցված զանգվածը մտցվում է տեսակավորման փուլ, որը կատարվում է 2 պահանջվող ֆրակցիների, քարմաղերի օգնությամբ ըստ ժապավենային փոխադրիչների միջոցով լցվում է խձի և ավազի կուտակման **իրապարակ**: Արտանետվում է անօրգանական փոշի N 1 աղբյուրից։

-*Երկրորդ հանգույցում* տեղադրված է ԿՕԴ-1200տիպի կոնային ջարդիչ և քարմաղ, որի օգնությամբ կատարվում է խՃաքարի վերաջարդում, ըստ պահանջվող ֆրակցիների և ժապավենային փոխադրիչների միջոցով լցվում է խՃի և ավազի կուտակման հրապարակ։

Արտանետվում է անօրգանական փոշի N 2, 3 աղբյուրներից։

Ընկերության արտանետումների աղբյուրները բաց արտադրական մակերեսներ են, որոնց հագեցումը սանիտար-փոշեորսիչ սարքերով գործնականում անհնար է։ Իներտ նյութերի բաց պահեստները հաձախ ջրում են փոշու արտանետումները մեղմացնելու համար։

- *Բետոնի և պեմզաբլոկի արտադրամասում* կատարվում է բետոնի շաղախի ստացման աշխատանքներ, օգտագործելով ցեմենտ, ավազ, նշված բաղադրամասերը համապատասխան քանակով լցվում են բետոնախառնիչների մեջ, որտեղ միաժամանակ ցեմենտի պահպանման աշտարակից մղվում է համապատասխան քանակի ցեմենտ, համասեռնվում է ջրով և պատրաստի բետոնը լցվում է բեռնատար մեքենաների մեջ և տեղափոխվում է օգտագործման։

Պատրաստի շաղախի որոշ մասը օգտագործվում է պեմզաբլոկի ստացման համար, շաղախը լցվում է պեմզաբլոկի կաղապարների մեջ և տրվում է չորանոց։

Բետոնի պատրաստման գործընթացում արտանետման հիմնական աղբյուրներն են` իներտ նյութերի բեռնումը դոզատորներ, ցեմենտի բեռնման - բեռնաթափման ժամանակ տրման խողովակները, սիլոսային բունկերներիը և պնևմապոմպերը։

Ցեմենտի բունկերի վրա տեղադրված են փոշեորսիչներ՝ թևքային ֆիլտրեր։ Նշված գործընթացներից արտանետվում է անօրգանական փոշի N 4 աղբյուրից։ - Կաթսայատունը նախատեսված է պեմզաբլոկների չորացման համար, տեղադրված է կաթսա` Ե-1/9 տիպի 1 հատ։ Հիմնական վառելիքը բնական գազն է։

Գազի միջին տարեկան ծախսը — **100 000 մ³/տարի,** *(պահեստային վառելիք նախատեսված չէ)։*

Գազի այրման ժամանակ առաջացած վնասակար նյութերը` ածխածնի օքսիդը և ազոտի օքսիդները արտանետվում են N 5 աղբյուրից։

Մեխանիկական տեղամասում կատարվում է հաստոցների, սղոցների ընթացիկ վերանորոգման, ինչպես նաև էլեկտրաեռակցման աշխատանքներ, որի ընթացքում արտանետվում է եռակցման աէրոզոլ և մանգանի օքսիդներ։

Նշված աշխատանքները ունեն չնչին արտանետումներ, այդ պատՃառով հաշվարկներում չեն ընդգրկվել։

Ցեմենտի բունկերի վրա տեղադրված է փոշեորսիչ` թևքային ֆիլտր:

Իներտ նյութերի բաց պահեստները հաձախ ջրում են փոշու արտանետումները մեղմացնելու համար։

W<-N-1,2 - Արտանետումների աղբյուրները բաց արտադրական մակերեսներ են, որոնց հագեցումը փոշեորսիչ սարքերով գործնականում անհնար է, ուստի տեխնոլոգիական և փոշեգազամաքրման սարքավորումների արդիականության և տվյալ արտադրության լավագույն հասանելի տեխնոլոգիաների կիրառում չի նախատեսվում։

Փոշու արտանետումները մեղմացնելու և նվազագույնին հասցնելու համար կատարվում է ջրցանման աշխատանքներ։

- Տեխնոլոգիական սարքավորումների քանակը, արտանետման աղբյուրների պարամետրերը, վնասակար նյութերի արտանետումների քանակը և տեսակը բերված են աղյուսակ 3-ում։

Մոտակա տարիների ընթացքում ձեռնարկության ընդլայնման, վերազինման, վերապրոֆիլարման, տեխնոլոգիական ծավալների փոփոխություններ չեն սպասվում, ուստի աղյուսակ 3 հեռանկար սյունյակը չի լրացվում։

3. ปลบกเการ นารนบธรากา นารกรกา บากเลชา นบานบนชนบาน

Աղյուսակ 1

Նյութի անվանումը	ՍԹԽ միանգամյա առավելագույն, մգ/մ ³	Նյութի արտանետումները տ/տարի						
Արտադրական հրապարակ N 1								
Փոշի անօրգանական (SiO ₂20-70%)	0.3	55.0						
Արտադրական հրապարակ N 2								
Փոշի անօրգանական (SiO2 –20-70%)	0.3	48.0						
Ածխածնի օքսիդ	5.0	0.940						
Ազոտի օքսիդներ (երկօքսիդի հաշվարկով)	0.2	0.321						

Գումարային հատկության նյութեր չկան։

นารกาบนน 2.

Արտադրամասի (տեղամասի) և աղբյուրների անվանումները	Նյութի անվանումը	Նյութի զարկային արտանե- տումը գ/զարկ	Արտանետման պարբերակա նությունը, (անգամ/ տարի)	Արտանետման տևողությունը, վրկ	Զարկային արտանետումն երի տարեկան քանակությունը, տոն.
1 Բազալտի հանքավայրի պայթեցման աշխատանքներ	2 Փոշի անօրգանական (SiO ₂ –20-70%)	3 1333333	4 15 անգամ	5 60վրկ	6 20.0

Ձարկային արտանետումները հաշվի են առնվում միայն արտանետման չափաքանակներում տարեկան կտրվածքով։ Դրանց համար չի իրականացվում ցրման հաշվարկ և դրանք չեն կարող ընդգրկված լինել տվյալ նյութի առավելագույն միանգամյա (գ/վրկ) արտանետման չափաքանակում։

Աղյուսակ 3

Արտա- դրություն, արտա- դրամաս	Աղտոտող նյութերի առաջացման աղբյուրները			Աշխատա- Արտանեւ Ժամը ման տարում աղբյուր ների անվանում		า-	ների քանակը		Աղբյուրի կարգա- թիվը		
	<u> Անվանումը</u> .	Քանա		7./		7./		7./		7./	
4	0	ՆՎ	<u> </u>	<i>U4</i>	<	<i>U4</i>	<u> </u>	bЧ	<i><</i>	bЧ	<i><</i>
1	2	3	4	5	6	7	8	9	10	11	12
	ириш	սդրակ	<u> </u>	<i>իրապա</i>	ршч	/V 7	1				
Բազալտի հանքավայր	Հանքաքարի արդյունահանման գործընթաց	1		2120		անկազ- մակերպ		1		1	
	<u> </u>	unnwli	<u> </u>	hршщи	เทเมโ	N 2			1		
Ձարդման տեսակա- վորման կայանք N1 առաջնային ջարդում	Սնուցող բունկեր փոխադրիչ կոտորակիչ քարմաղ կոնային ջարդիչ ռոտոր. ջարդիչ ժապ.փոխադրիչ	4 1 1 2 1 1 4		2120		անկազ- մակերպ		1		1	
տեսակա- վորման կայանք N2	բունկեր կոտորակիչ քարմաղ ժապ.փոխադրիչ	1 1 1 3		2120		անկազ- մակերպ		1		2	
Իներտ նյութերի կուտուտակ- ման հրապ.	ԽՃի, ավազի բաց պահեստներ	2		4500		անկազ- մակերպ		1		3	
Քետոնի և պեմզաբլոկի արտադրամաս	Նախ.դոզավոր-մա բունկերներ ցեմենտի բունկեր Ժապ.փոխադրիչ բետոնախառնիչ	3		2120		անկազ- մակերպ		1		4	
	<u>Կաթսայատուն</u> կաթսա	1	_	1800		խողո- վակ		1		5	

3-րդ աղյուսակի շարունակությունը

	Աղբյուրի կարգաթիվը		Աղբյուրի բարձրությունը, մ		ւգիծը	ը Գազաօդային խառնուրդի պարամետրերը արտանետման աղբյուրի ելքում					տրերը
			արագու- թյունը մ/վրկ		ծավալը մ3/վրկ		ջերմաստի- Ճանր				
ՆՎ	<	ՆՎ	<	<i>ЪЧ</i>	<	ՆՎ	<	ՆՎ	<	ՆՎ	<
11	12	13	14	15	16	17	18	19	20	21	22
Արտադրական հրապարակ N 1											
1		3		150		5.0		88357,3		20	
Արտադրական հրապարակ N 2											
1		5		80		6.0		30159,3		20	
2		4		60		6.0		16964,6		20	
3		5		80		4.0		20106,2		20	
4		7		20		5.0		1570,8		20	
5		6		0.3		28.4		2,007		120	

3-րդ աղյուսակի շարունակությունը

Աղբյւ կար թիւ	qu-				ם	մա սար	զերը քրող ւքերի սնումը	Մաքրվող նյութերը		Մաքրման միջին շահագործմա ն աստիՃանը		
		կետային աղբյուրի, աղբյուրների խմբի կենտրոնի կամ գծային աղբ. 1-ին ծայրի		ւի ծայրի ւ ն		ուրի 2 -րդ		Ապա վածո գործս [%]	ւթյան սկիցը	առավ	ւքրմա լելագ փը, %	ույն
<i>ህ</i>	<	X1	Y1	X2	Y2	ՆՎ	<i><</i>	ՆՎ	<	bЧ		ζ
11	12	23	24	25	26		<i>27</i>	28	29	30	31	32
II.	Xo – 250 <i>Արտադրական հրապարակ N 1</i> Yo - 310											
1		200	110	350	260							
				Արտա	սդրակա	ւն Իրա	պարակ (V <i>2</i>				
1		45	30	125	110							
2		140	60	200	120							
3		110	20	190	100							
4		90	5	110	25							
5		150	4	-	-							

3-րդ աղյուսակի շարունակությունը

Աղբյու-	Նյութի	Աղտոտող նյութերի արտանետումները					ueu	
րի	անվանումը	ՆՎ			ረ (ሀԹԱ)			իասնե-
կարգա-		գ/վրկ	մգ/մ3	տ/տ	գ/վրկ	մգ/մ3	տ/տ	เทเ
թիվը								տարին

Արտադրական հրապարակ N 1

1	Փոշի անօրգանական (SiO ₂ –20-70%) փոշի զարկային	4.586 0	0.052 -	35.0 20.0	4.586 0	0.052	35.0 20.0	2020			
Արտադրական հրապարակ N 2											
1	Փոշի անօրգանական (SiO ₂ –20 -70%)	3.014	0.10	23.00	3.014	0.10	23.00	2020			
2	Փոշի անօրգանական (SiO ₂ –20 -70%)	1.441	0.085	11.0	1.441	0.085	11.0	2020			
3	Փոշի անօրգանական (SiO ₂ –20 -70%)	0.648	0.032	10.500	0.648	0.032	10.500	2020			
4	Փոշի անօրգանական (SiO ₂ –20 -70%)	0.459	0.292	3.500	0.459	0.292	3.500	2020			
5	Ածխածնի օքսիդ Ազոտի օքսիդներ	0.145 0.050	72.25 24.91	0.940 0.321	0.145 0.050	72.25 24.91	0.940 0.321	2020			

ՆՎ՝ ներկա վիձակ, Հ՝ հեռանկար

6. บดน บกกบนรหนบชกห/วนФนยนบนนห Հนธนนกนห Հนบนก นบՀกนชชธร ชนนนชรน3หบ รน3นเบชกฏ

Կատարվել է մթնոլորտն աղտոտող նյութերի աղբյուրների գույքագրում։ Ըստ գույքագրման արդյունքի ՍԹԱ հաշվարկի ելակետային տվյալները կազմվել և հաշվարկվել են ГОСТ 17.2.3.02-78- ին համապատասխան և բերված են 3 աղյուսակում։ Հաշվարկները կատարվել են «Տարբեր արտադրությունների կողմից մթնոլորտն աղտոտող նյութերի արտանետումների հաշվարկի մեթոդիկան» ժողովածուի հիման վրա։

Նստեցման անչափելի գործակիցն ընդունվել է` գազանման վնասակար նյութերի և մանր դիսպերսության փոշու համար, որոնց նստեցման կարգավորված արագությունը չի գերազանցում 3-5 սմ/վրկ` 1, խոշոր դիսպերսության փոշու համար մաքրման բացակայության դեպքում` 3, մաքրման դեպքում` 2:

U/Հ - N 1. 2 հաշվի առնելով, որ Երևան քաղաքի մթնոլորտում փոշու, ազոտի օքսիդների, ծծմբի անհիդրիդի, ածխածնի օքսիդի ֆոնային աղտոտվածության մակարդակը գերազանցում է թույլատրելի նորմերը (ՍԹԿ) Երևանում գործող կամ նախագծվող աղտոտման աղբյուրների համար ցրման համակարգչային հաշվարկը կատարվել է առանց ֆոնային աղտոտվածության տվյալների։ Նշված նյութերի արտանետումների նորմավորումը կարգավորվում է ՀՀ բնապահպանության նախարարի 16.03.2005թ.

N 78-Ա իրամանով, ըստ որի ամբողջ քաղաքի տարածքում փոշին 0.08 ՍԹԿ **(փոշու տվյալները ներկայացված է 0.5մգ/մ³ ՍԹԿ ունեցող չտարբերակված փոշիների` այսինքն կախված մասնիկների համար),** ծծմբի անհիդրիդի նորմը սահմանված է 0.5 ՍԹԿ, ածխածնի օքսիդինը` 0.1 ՍԹԿ։

Ազոտի օքսիդի համար տարբեր համայնքների տարածքների համար սահմանված են տարբեր նորմեր, Արաբկիր 0.03 ՍԹԿ, Կենտրոն՝ 0.07 ՍԹԿ, Շենգավիթ՝ 0.5 ՍԹԿ;

7.4บนบนฯนา บ3กเลชาา นารนบธรกเบบชาา ชาบนบ <นะนนานา

Մթնոլորտում վնասակար նյութերի ցրվածության հաշվարկները կատարելու համար Ճշգրտված և ուղղված տվյալների հիման վրա կազմվել են ՍԹԱ հաշվարկի ելակետային տվյալները։

Հաշվարկները կատարվել են «Տարբեր արտադրությունների կողմից մթնոլորտըն աղտոտող նյութերի արտանետումների հաշվարկի մեթոդիկան» ժողովածուի հիման վրա։

Վնասակար նյութերով մթնոլորտի աղտոտվածության հաշվարկը կատարվել է «էկո ցենտր» մեքենալական ծրագրով։

Գետնամերձ խտությունների բաշխման որոշումը կատարվել է 200մ քայլով։

ՕԴԵՐԵՎՈͰԹԱԲԱՆԱԿԱՆ ԲՆՈͰԹԱԳՐԵՐԸ ԵՎ ԳՈՐԾԱԿԻՑՆԵՐԸ ՈՐՈՆՔ ԲՆՈՐՈՇՈͰՄ ԵՆ ԲՆԱԿԵԼԻ ՏԱՐԱԾՔԻ ՄԹՆՈԼՈՐՏՈͰՄ ՎՆԱՍԱԿԱՐ ՆՅՈͰԹԵՐԻ ՑՐՄԱՆ ՊԱՅՄԱՆՆԵՐԸ

Ցրման պայմանները որոշող օդերևութաբանական բնութագրերը և գործակիցները ներկայացված են ստորև բերված աղյուսակում։ Սահմանային թույլատրելի առավելագույն միանվագ կոնցենտրացիաները վերցված են ՀՀ կառավարության 2006թ. փետրվարի 2-ի N160-Ն որոշմամբ հաստատված ցանկից։

Աղյուսակ 4

բՆՈͰԹԱԳՐԵՐԻ ԱՆՎԱՆՈͰՄԸ	ԱՐԺԵՔԸ
	ሠረ- N -1.2
Մթնոլորտի ստրատիֆիկացիայի գործակիցը, A	200
Տեղանքի ռելեֆի գործակիցը (հաշվարկված համաձայն կողմնորոշչի)	1.0
Տարվա ամենաշոգ ամսվա միջին առավելագույն ջերմաստիՃանը T ⁰ C	33.0°C
Միջին տարեկան քամիների վարդը 8 ուղղություններով (ռումբ %)	
Հյուսիս	12
Հյուսիս-արևելք	35
Արևելք	13
Հարավ-արևելք	9
Հարավ	14
Հարավ-արևմուտք	6
Արևմուտք	7
Հյուսիս-արևմուտք	4
Քամու բազմամյա միջին արագությունը (մ/վրկ), որը հնարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)	2.9 մ/վրկ
Քամու բազմամյա միջին առավելագույն արագությունը (մ/վրկ), որը ինարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)	26 մ/վրկ

8. ՎՆԱՍԱԿԱՐ ՆՅՈͰԹԵՐԻ ՑՐՄԱՆ \prec ԱՇՎԱՐԿԻ \prec ԱԿԻՐ Δ ԱՐԴՅՈͰՆՔՆԵՐԸ

Մթնոլորտում վնասակար նյութերի արտանետումների ցրման հաշվարկի արդյունքները ներկա վիձակի և հեռանկարի համար ցույց են տալիս, որ սահմանային թույլատրելի խտության գերազանցում չի դիտվում ոչ մի նյութի համար, այդ իսկ պատձառով վնասակար նյութերի համար սահմանված նորմատիվները առաջարկվում է ընդունել որպես ՍԹԱ։

Վնասակար նյութերի համար սահմանված նորմատիվների առաջարկները ներկայացված են աղյուսակ 6-ում։

Հաշվարկների վերլուծության հիման վրա առաջարկվում է բոլոր նյութերի համար նախատեսված արտանետումները ընդունել որպես սահմանային թույլատրելի. տես աղյուսակ 5.:

վնասակար նյութերի ցրման հաշվարկի մակերսն ընդգրկում է մինչև Համաձայն 0.05ՍԹԽ աղտոտվածությամբ տարածքները, իսկ ցանցի քայլը թույլ է տայիս գնահատելու աղտոտվածությունն կազմակերպության տարածքի եզրին, սանիտարապաշտպանական gnunnı սահմանի եզրին և ամենամոտ բնակելի տարածքներում։ Տես. «էկո ցենտր» հաշվարկը։

Ձեռնարկության արտանետումները չեն գերազանցում այդ վնասակար նյութերի համար սահմանված չափանիշները, այդ պատձառով արտանետումների քանակն իջեցնող միջոցառումների պլան չի նախատեսվում։

9. บลบกเการห นบชบนบชช นารกรกหบบชา นกนณนรบกา นาค3กหาบชาห 8กหมน

«Էկո ցենտր» հաշվարկից երևում է որ ձեռնարկության արտանետումները տվյալ տեղանքի աղտոտվածության հետ չեն գերազանցում այդ վնասակար նյութերի համար սահմանված չափանիշները, այդ պատձառով արտանետումների քանակն իջեցնող միջոցառումների պլան չի նախատեսվում։ Աղտոտող նյութերի գետնամերձ խտությունները չեն գերազանցում համապատասխան նյութերի ՍԹԽ։

«Էկո ցենտր» հաշվարկի բացատագրում և աղյուսակներում երևում են առավելագույն գետնամերծ խտությունը։

10. ՍԹԱ ՆՈՐՄԱՏԻՎՆԵՐ ՀԱՄՆԵԼՈԼ ՄԻԶՈՑԱՌՈԼՄՆԵՐԻ ԾՐԱԳԻՐ

นา30เบนฯ 5

NN	Միջոցառման	Իրականաց-	Վնասակար նյութի		Վնասակար նյութի		Վնասակւ	սր նյութի
ը /կ	անվանումը և	ման	(նյութեր)		(նյութեր) (նյութ		(նյութեր) ար	տանետումը
	աղտոտման ժամկետը արտանետումը մինչև աղբյուրի միջոցառումը համարր		արտանետումը մինչև		իրականացն	itilnig htimn		
			գ/վրկ տ/տարի		գ/վրկ	տ/տարի		

Արտադրական հրապարակ N 1

ՓՈՇԻ ԱՆՕՐԳԱՆԱԿԱՆ (SiO2 –20-70%)

			4.586	35.0	4.586	35.0
1	1	2020	0	20.0	0	20.0
			4.586	55.0	4.586	55.0

Արտադրական հրապարակ N 2

ՓՈՇԻ ԱՆՕՐԳԱՆԱԿԱՆ (SiO2 –20-70%)

1	1	2020	3.014	23.00	3.014	23.00	
2	2	2020	1.441	11.0	1.441	11.0	
3	3	2020	0.648	10.500	0.648	10.500	
4	4	2020	0.459	0.459 3.500		3.500	
	Ընդամենը	2020	5.562	48.0	5.562	48.0	

ԱԾԽԱԾՆԻ ՕՔՍԻԴ

1 5 2020 0.145 0.940 0.	0.940
-------------------------	-------

ԱԶՈՏԻ ՕՔՍԻԴՆԵՐ (երկօքսիդի հաշվարկով)

1	5	2020	0.050	0.321	0.050	0.321
---	---	------	-------	-------	-------	-------

Քանի որ արտանետումները չեն առաջացնում գերնորմատիվային աղտոտվածություն, չի նախատեսվում արտանետումների նվազեցմանն ուղղված միջոցառումներ, աղյուսակ 5-ը լրացվում է համաձայն փաստացի չափաքանակների, որոնք առաջարկվում են որպես ՍԹԱ նորմատիվներ։

11. นบั่นทิช นาคลิกหาบั่นทาย นารกรกา บั่ลกหัต้มา บัติบักเการ นารนบับรับเกาะ «บักษันนบั่ลนับ คนอนเร» บาติ 2นคนคนบันนบั่นที่ นารนบับรับนับ เด็กหลีเริ่นกหัตลิกหับบั่นที่

ԱՂՅՈՒՍԱԿ 6.

Աղտոտող նյութը	Ընդիանուր արտանետումները								
	գ/վրկ	տ/տարի							
Արտադրական հրապարակ N 1									
Փոշի անօրգանական (SiO ₂ –20-70%)	4.586	55.0							
Արտադրական հրապարակ N 2									
Փոշի անօրգանական (SiO ₂ –20-70%)	5.562	48.0							
Ածխածնի օքսիդ	0.145	0.940							
Ազոտի օքսիդներ <i>(երկօքսիդի հաշվարկով)</i>	0.050	0.321							

Անբարենպաստ եղանակի դեպքում արտանետումների կարգավորման միջոցառումները կրում են կազմակերպչական-տեխնիկական բնույթ և գործնականորեն ընդգրկում են վնասակար նյութերի արտանետումների բոլոր աղբյուրները։

- 1. Թույլ չտալ սարքավորման գերբեռնված աշխատանք
- 2. Խստորեն հետևել տեխնոլոգիայի ընթացակարգին
- 3. Չբեռնավորել և չդատարկել լուծիչներ և հեշտ բոցավառվող բռնկվող նյութեր
- 4. Սահմանափակել փոշու արտանետումը
- 5. Վնասակար նյութերի արտանետումների քանակի մեծացման դեպքում հարկ է անմիջապես դանդաղեցնել կամ ժամանակավորապես դադարեցնել տվյալ սարքավորման աշխատանքը։
- 6. Վնասակար նյութերի` փոշու արտանետումները նվազեցնելու համար արտադրական հրապարակը, ավտոՃանապարհները պարբերաբար ջրել։

13. ՄԻԶՈՑԱՌՈՒՄՆԵՐ, ՈՐՈՆՔ ՆԱԽԱՏԵՍՎՈՒՄ ԵՎ ԻՐԱԿԱՆԱՑՎՈՒՄ ԵՆ ԱՐՏԱՆԵՏՈՒՄՆԵՐԻ ՎԵՐԱՀՍԿՄԱՆ ԵՎ ՍԹԱ ԿԱՏԱՐՄԱՆ ՆՊԱՏԱԿՈՎ

Քանի որ ՍԹԱ կատարման համար պատասխանատու է ձեռնարկությունը, արտանետումներին հետևում և ստուգում է բնության պահպանության համար պատասխա-նատու անձը։

Վնասակար նյութերի արտանետումների քանակը որոշվում է այդ վնասակար նյութերի խտությունների և գազերի օդային խառնուրդների ծավալների ուղղակի չափման մեթոդներով։ Ուղղակի չափման մեթոդների անհնարինության դեպքում թույլատրվում է տեսական հաշվարկի մեթոդը։ Տվյալ դեպքում օգտագործվել է տեսական հաշվարկի մեթոդը։

Անբարենպաստ կլիմայական պայմանների ժամանակ, բնակչության առողջության համար վնասաբեր մթնոլորտի աղտոտման ընթացքում ձեռնարկությունը պարտավոր է վնասակար նյութերի արտանետումները իջեցնել ընդհուպ մինչև աշխատանքի դադարեցումը։

Եթե վթարի արդյունքում ՍԹԱ -ի նորմատիվը գերազանցվում է, ձեռնարկությունը պարտավոր է այդ մասին հայտնել մթնոլորտի պահպանությունը վերահսկող մարմնին և անհապաղ միջոցներ ձեռնարկել վնասակար նյութերի արտանետումները սահմանափակելու ուղղությամբ, ինչպես նաև «ՀՀ ԱՆ Առողջապահական տեսչական մարմին» տեղեկատվություն հաղորդել վթարի և ձեռնարկված միջոցառումների մասին։

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ ՕՊՕ-ի ՀԱՇՎԱՐԿԸ

Սահմանային թույլատրելի արտանետումների նորմատիվները սահմանվում են այն արտանետման աղբյուրների կամ դրանց խմբերի համար, որոնց արտանետումների առավելագույն նախագծային ցուցանիշների հիման վրա հաշվարկված օդի պահանջվող օգտագործումը մեկ տարում գերազանցում է երկու միլիարդ խորանարդ մետր չափանիշը կամ վայրկյանում գերազանցում է երկու հազար խորանարդ մետր չափանիշը։

Այն կազմակերպությունները, որոնք ունեն մթնոլորտային արտանետումների անշարժ աղբյուրներ, և նրանց նախագծային առավելագույն արտանետումները պետք է բավարարեն հետևյալ պայմանը`

Ο¶Ο տարեկան=
$$\sum \frac{n U i}{i U \partial U i}$$
 >2 մլրդ խոր. մ/տարի, որտեղ`

ՕՊՕ տարեկան-ը օդի պահանջվող օգտագործումն է` տարեկան կտրվածքով,

- Աi-ն i-րդ նյութի տարեկան առավելագույն արտանետումն է` ըստ Հայաստանի Հանրապետության բնապահպանության նախարարության կողմից հաստատված սահմանային թույլատրելի արտանետումների նորմատիվների նախագծի կամ տեխնոլոգիական ռեգլամենտի` մգ/տարի,
- ՍԹԿi-ն i-րդ նյութի միջին օրական սահմանային թույլատրելի խտությունն է` մգ/խոր. մ:

W/Հ-N-1 –ի համար ՕՊՕ-ն հաշվարկվել է`

- **Անօրգանական փոշու** համար` ՍԹԽ-ի միջին օրեկա 0.1մգ/մ³, իսկ տվյալ նյութի առավելագույն արտանետումը կազմում է 55.0 տ/տարի։

OՊO =
$$(55.0 \times 10^9)$$
: 0.1 = 550.0 մլրդ մ³/տարի

ՕՊՕ-ն գերազանցում է 2 մլրդ/մ³ շեմը (**550.0**մլրդմ³/տարի), ապա ընկերությունը պետք է մշակի ահմանային թույլատրելի արտանետումների նորմատիվներ` արտանետման աղբյուրներ կամ դրանց խմբերի համար։

WՀ-N-2 –ի համար ՕՊՕ-ն հաշվարկվել է`

- **Անօրգանական փոշու** համար` ՍԹԽ-ի միջին օրեկա 0.1մգ/մ³, իսկ տվյալ նյութի առավելագույն արտանետումը կազմում է 48.0 տ/տարի։
- **Ածխածնի օքսիդի** համար` ՍԹԽ-ի միջին օրեկա 3 մգ/մ³, իսկ տվյալ նյութի առավելագույն արտանետումը կազմում է 0.940 տ/տարի։
- **Ազոտի օքսիդների** (երկօքսիդի հաշվարկով) համար` ՍԹԽ-ի միջին օրեկանը 0.04 մգ/մ³, իսկ տվյալ նյութի առավելագույն արտանետումը կազմում է 0.321տ/տարի։

OባO =
$$(48.0 \times 10^9)$$
 : $0.1 + (0.940 \times 10^9)$: $3 + (0.321 \times 10^9)$: $0.04 = 488.338$ մլրդ մ³/տարի

ՕՊՕ-ն գերազանցում է 2 մլրդ/մ³ շեմը (**488.338 մլրդ** մ³/տարի), ապա ընկերությունը պետք է մշակի ահմանային թույլատրելի արտանետումների նորմատիվներ՝ արտանետման աղբյուրների կամ դրանց խմբերի համար։

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ *գործունեությունից արտանետումների իետևանքով շրջակա միջավայրին հասցվելիք*<u>Վնասի մեծության հաշվարկ</u>

Համաձայն «Մթնոլորտային օդի պահպանության մասին» օրենքի, բնությանը հասցված վնասի հատուցման հաշվարկը կատարվում է համաձայն «Մթնոլորտի վրա տնտեսական գործունեության հետևանքով առաջացած ազդեցության գնահատման կարգի», հաստատված 21.01.2005թ. թիվ N 91-Ն ՀՀ Կառավարության որոշմամբ,

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ կողմից հասցված վնասի մեծության հաշվարկը կատարվում է հետևյալ բանաձևով`

$$U2 = Cq \bullet \Phi g \bullet \sum P_1 \bullet V_1$$

որտեղ`

Շգ - աղտոտող աղբյուրի շրջապատի գործակիցն է` - 4

Фց - փոխանցման գործակիցն է` - 1000 դրամ

Վլ– նյութի համեմատական վնասակարության մեծությունն է

Ք₁ — տվյալ նյութի արտանետումների քանակի հետ կապված գործակիցն է, որը հաշվում են հետևյալ բանաձևով`

$$P_1 = q \bullet / 3Su_1 - 2U\partial U /$$

որտեղ`

գ - անշարժ աղբյուրների համար – 1

Տա - տվյալ նյութի արտանետման քանակն է

«ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՍՊԸ արտանետումներով տնտեսությանը հասցված վնասի հաշվարկը բերված է աղյուսակում

Նյութի անվանումը	ք ₁ տոննա	ζq	Фд դրամ	U₁	Ա դրամ							
Արտադրական հրապարակ N 1												
Փոշի անօրգանական (SiO ₂ 20 -70%)	2200000											
Արտադրական հրապարակ N 2												
Фոշի անօրգանական (SiO ₂ 20 -70%)	48.0	4	1000	10	1920000							
Ածխածնի օքսիդ	0.940	4	1000	1	3760							
Ազոտի օքսիդներ	0.321	4	1000	12,5	16050							
Ընդամենը					1939810							

ԴԵԼԻԵՖԻ ԳՈՐԾԱԿՑԻ ՀԱՇՎԱՐԿԸ «ԵՐԵՎԱՆՅԱՆ ԲԱԶԱԼՏ» ՄՊԸ

Արտադրական հրապարակ N 1

 $\Omega = 1 + Ֆ (\Omegaմ - 1) բանաձևով$

Դ – չափողականություն չունեցող, տեղանքի ազդեցությունը հաշվառող գործակիցն է։ Հարթ կամ թույլ անկում ունեցող տարածքների համար, երբ 1կմ. վրա անկումը չի գերազանցում 50մ։

Ղ գործակիցը կարելի է ընդունել միավորին հավասար Ղ = 1 (〇しԴ - 86 էջ 5):

Չեռնարկությունը գտնվում է հարթ տարածքի վրա, աղբյուրի ամենաբարձ խողովակը 3 մ է: Մինչև 1կմ հեռավորության վրա ΔΗ-ը չի գերազանցում 50մ, ուստի`

 $\Omega = 1$

Արտադրական հրապարակ N 2

Ձեռնարկությունը գտնվում է հարթ տարածքի վրա, աղբյուրի ամենաբարձ խողովակը 7 մ է: Մինչև 1կմ հեռավորության վրա ΔH-ը չի գերազանցում 50մ, ուստի`

 $\Omega = 1$

ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ՇՐՋԱԿԱ ՄԻՋԱՎԱՅՐԻ ՆԱԽԱՐԱՐՈՒԹՅԱՆ «ՀԻԴՐՈՕԴԵՐԵՎՈՒԹԱԲԱՆՈՒԹՅԱՆ ԵՎ ՄՈՆԻԹՈՐԻՆԳԻ ԿԵՆՏՐՈՆ» ՊՈԱԿ ՏՆՕՐԵՆ

«<u>29</u>»<u>06</u> 2020р.

№ <u>08/LU/ - 125</u>

«Էկոբարիք-աուդիտ» ՍՊԸ տնօրեն պարոն Ա.Միրզախանյանին

Հարգելի պարոն Միրզախանյան

Ի պատասխան Ձեր 2020 թվականի հունիսի 23-ի թիվ 06 գրության տրամադրում եմ բազմամյա կլիմայական հարաչափերն ըստ Շրջակա միջավայրի նախարարության «Հիդրոօդերևութաբանության և մոնիթորինգի կենտրոն» ՊՈԱԿ-ի Երևան ագրո օդերևութաբանական կայանի տվյալների.

Մթնոլորտի ստրատիֆիկացիայի գործակիցը	200
Տարվա ամենաշոգ ամսվա միջին առավելագույն ջերմաստիճանը T°C	33.0
Քամու բազմամյա միջին արագությունը (մ/վրկ), որը հնարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)	2.9
Քամու բազմամյա միջին առավելագույն արագությունը (մ/վրկ), որը հնարավոր է 20 տարին մեկ անգամ (5% ապահովվածությամբ)	26

Քամու ուղղությունների և անդորրի կրկնելիությունը (%)

∠u	ՀսԱրլ	Արլ	ՀվԱրլ	< 4	ՀվԱրմ	Արմ	ՀսԱրմ	Անդորը
12	35	13	9	14	6	7	4	54

L. Myfing

Հարգանքով՝ Տնօրենի ժ/պ

Լ. Ազիզյան

Սպասարկման և մարկեւրինգի բաժին Նորա Հակոբյան 012-31-79-13

0025, ք.Երևան, Չարենցի 46 Հեռ.՝ (+374 10) 55 47 32, Էլ փոստ՝ hmc@env.am

048น4กาซนนซ 4กนนนบกหลงกาบ

- 1. ГОСТ 17.2. 3. 02 78 "Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями".
- 2. Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами. Ленинград Гидрометеоиздат -1986г.
- 3. Временная инструкция о порядке проведения работ по установлению нормативов допустимых выбросов вредных веществ в атмосферу для отдельно нормируемых предприятий промышленности, ОНД-86.
- 4. ՀՀ կառավարության 27.12.2012թ. "Մթնոլորտային օդն աղտոտող նյութերի սահմանային թույլատրելի արտանետումների նորմատիվների մշակման ու հաստատման կարգը սահմանելու եվ Հայաստանի Հանրապետության կառավարության 1999 թվականի մարտի 30-ի N 192 և 2008 թվականի օգոստոսի 21-ի N 953-Ն որոշումներն ուժը կորցրած Ճանաչելու մասին" թիվ 1673-Ն որոշումը։
- 5. ՀՀ Կառավարության 21.01.2005թ. թիվ N 91-Ն որոշմամը. «Մթնոլորտի վրա տնտեսական գործունեության հետևանքով առաջացած ազդեցության գնահատման կարգի»։

Расчёт загрязнения атмосферы для ООО «Ереванян Базальт» унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр» Промплощадка N1

Расчёт загрязнения атмосферы выполнен в соответствии с ОНД-86 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий», с использованием унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр».

1.1 Исходные данные для проведения расчета загрязнения атмосферы

порог целесообразности по вкладу источников выброса: **0,05**; расчетный год **2020**.

Метеорологические характеристики и коэффициенты:

коэффициент, зависящий от температурной стратификации атмосферы: 200;

средняя температура наружного воздуха, °C: **33,0** коэффициент рельефа: **1**.

Параметры перебора ветров:

направление, метео °:0 - 360 (шаг 1);скорость, м/с:0,5 - 8 (шаг 0,1).

Основная система координат - правая с ориентацией оси ОУ на Север.

Количество загрязняющих веществ в расчете - 1 (в том числе твердых - 1; жидких и газообразных - нет), групп суммации - нет. Перечень и коды веществ и групп суммации, участвующих в расчёте загрязнения атмосферы, с указанием класса опасности и предельно-допустимой концентрации (ПДК) либо ориентировочного безопасного уровня воздействия (ОБУВ), приведен в таблице 1.1.1.

Таблица № 1.1.1 - Перечень загрязняющих веществ и групп суммации

	Загрязняющее вещество	Класс	Предельно-допустимая концентрация, мг/м³					
код	наименование	опасности	максимальн- разовая	средне- суточная	ОБУВ	Используется в расчете		
1	2	3	4	5	6	7		
2908	Пыль неорганическая: SiO2 20-70%	3	0,3	0,1	-	0,3		

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.1.2.

Таблица № 1.1.2 - Параметры расчетных точек

		Координаты	Тип точки	
Наименование	Х	Y	высота, м	X
1	2	3	1	2
Pac	четная площадка 1(СК (Основная СК)		
1	157,45	192,45	1	157,45
2	290,83	-57,07	2	290,83
3	77,84	-344,25	3	77,84
4	-273,93	-198,54	4	-273,93
5	-231,36	144,22	5	-231,36
6	-117,62	9,2	6	-117,62
7	81,05	32,22	2	Точка в промзоне
8	99,08	-123,35	2	Точка в промзоне
9	-99,59	-146,37	2	Точка в промзоне
10	-327,4	127,6	2	Точка в жилой зоне
11	-173,9	246,7	2	Точка в жилой зоне
12	183,3	238,7	2	Точка в жилой зоне
13	614,5	-211,1	2	Точка в жилой зоне
14	463,7	-182	2	Точка в жилой зоне
15	424	-97,3	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.1.3.

Таблица № 1.1.3 - Параметры расчетных площадок

		Координаты ср			Шаг			
Наименование	точі	ка 1	точ	Ширина,	Высота,	сет	Шаг С33,	
Паименование	X ₁	Y ₁	X ₂	Y ₂	M	M	ки,	M
	_	_	_	_			M	
1	2	3	4	5	6	7	8	9
1	-1498,52	-9,13	1460,29	-9,13	2301,779	2	200	-

Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам, приведена в таблице 1.1.4.

Таблица № 1.1.4 - Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам

№ И3А	nacyet		№ режим а ИЗА	Срок действия режима ИЗА в расчётном году		Рабочий график	Принадлежность к группе источников, работающих не одновременно			
e	фона	u visa	начало	окончание						
1	2	3	4	5	6	7	8			
Объек Площа		1. Объе		1						
Площадка: 1. Площадка №1 Цех: 1. Цех №1										
1	+	+	-	01 января	31 декабря	-	-			

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.1.5.

Таблица № 1.1.5 - Параметры источников загрязнения атмосферы

No	№ _ Высо Диам	Параметры ГВС			С	K	Координаты			Опас.	Загрязняющее вещество			Макс.	Расст. до	
ИЗА	Тип			скорость,	объем,	темп.,	X_1	Y ₁	ширина,	К рел	скор. ветра,	код	масса	К	конц-я, д.ПДК	ксиму- ма-
				m/c	M³/C	°C	X ₂	Y ₂	M	m m/c	м/с		выброса, г/с	oc.	дліді	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объе	Объект: 1. Объект №1															
Площ	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех І	N º1												
1	4	3	150	5	88357,3	20	200	110	200	1	476,667	2908	4,586	3	0,61	353,27
							350	260								

1.2 Расчет загрязнения по веществу «2908. Пыль неорганическая: SiO2 20-70%»

Полное наименование вещества с кодом 2908 — Пыль неорганическая, содержащая 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.). Максимально разовая предельно допустимая концентрация составляет 0,3 мг/м³, класс опасности 3.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 1 (в том числе: организованных - 1, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 м - 1; 11-20 м - нет; 21-29 м - нет; 30-50 м - нет; 51-100 м - нет; более 100 м - нет.

Суммарный выброс, учтенных в расчёте источников, составляет 4,586 грамм в секунду и 0 тонн в год.

Расчётных точек – 15, расчётных площадок - 1 (узлов расчётной сетки - 180).

Максимальная расчётная приземная концентрация (См), выраженная в долях ПДК населенных мест, по расчётной площадке № 1 составляет:

- на границе СЗЗ **0,003**, которая достигается в точке № *4* X=-*273,93* Y=-*198,54*, при направлении ветра *63*°, скорости ветра *8* м/с, в том числе: вклад источников предприятия *0,003*;
- в жилой зоне **0,006**, которая достигается в точке № *13* X=*614,5* Y=*-211,1*, при направлении ветра *284*°, скорости ветра *8* м/с, в том числе: вклад источников предприятия *0,006*.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.2.2.

Таблица № 1.2.2 - Параметры расчетных точек

		Координаты				
Наименование	Х	Υ	высота <i>,</i> м	Тип точки		
1	2	3	4	5		
Расчетная площадка 1(СК Основная СК)						
1	157,45	192,45	2	Точка на границе ОС33		
2	290,83	-57,07	2	Точка на границе ОС33		
3	77,84	-344,25	2	Точка на границе ОС33		
4	-273,93	-198,54	2	Точка на границе ОС33		
5	-231,36	144,22	2	Точка на границе ОС33		
6	-117,62	9,2	2	Точка в промзоне		
7	81,05	32,22	2	Точка в промзоне		
8	99,08	-123,35	2	Точка в промзоне		
9	-99,59	-146,37	2	Точка в промзоне		
10	-327,4	127,6	2	Точка в жилой зоне		
11	-173,9	246,7	2	Точка в жилой зоне		
12	183,3	238,7	2	Точка в жилой зоне		
13	614,5	-211,1	2	Точка в жилой зоне		
14	463,7	-182	2	Точка в жилой зоне		
15	424	-97,3	2	Точка в жилой зоне		

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.2.3.

Таблица № 1.2.3 - Параметры расчетных площадок

		Illiania	D. 100TO	Шаг	Шаг С33,			
Наименование	точ	ка 1	точ	Ширина,	1	сетки,	'	
	X ₁	Y ₁	X ₂	Y ₂	M	M	M	M
1	2	3	4	5	6	7	8	9
1	-1498,52	-9,13	1460,29	-9,13	2301,779	2	200	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.2.4.

Таблица № 1.2.4 - Параметры источников загрязнения атмосферы

			Параметры ГВС			Координаты				Опас.	Загрязняющее вещество			Макс.	Расст. до	
Nº N3A	Тип		Диам етр, м	ость, м/с	ьем, м³/с	ıп. <i>,</i> °С	X ₁	Y ₁	оина, м		скор.	юд	са выброса, г/с	c.	конц-я, д.ПДК скорос ть, м/с	ма-ксиму- ма, м объем, м³/с
1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	6
Объен	⟨Т:		1. Объ	ект №1												
Площ	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех	Nº1												
1	4	3	150	5	88357,3	20	-0,26 -18,28	-134,86 20,71	200	1	1	4	3	150	5	88357,3

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.2.5.

Таблица № 1.2.5 - Значения максимальных концентраций в расчетных точках

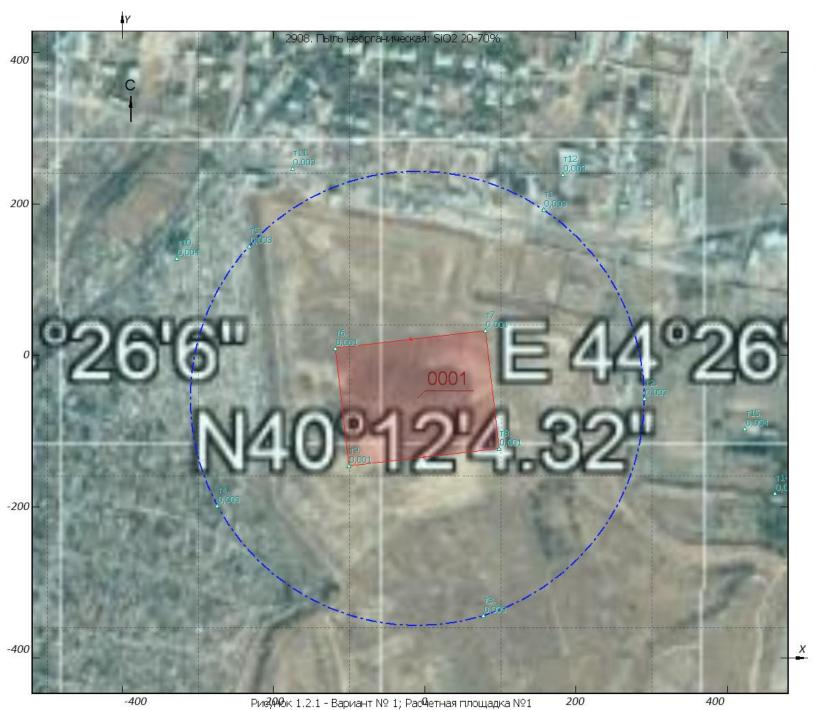
ιοι

Наименование		Коор	Расчетная концентрация			клад	Ветер: направлен		Вклад ИЗА			
	ип	х	Y	ота, м	.пдк	ΜΓ/M ³	, д.ПДК	предпр иятия, д.ПДК	ие; скорость, °↑м/с	ı., Цех, ИЗА	пдк	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площа	дка 1(СК	Основная СК)										
	C33	157,45	192,45	2	,003	,0009	-	,003	15 ⊅ 8	1.1.1	,003	100
	C33	290,83	-57,07	2	,003	,00093	-	,003	70 → 8	1.1.1	,003	100
	C33	77,84	-344,25	2	,003	,00075	-	,003	39 ↓ 8	1.1.1	,003	100
	C33	-273,93	-198,54	2	,003	,00095	-	,003	53 ∠ 8	1.1.1	,003	100
	C33	-231,36	144,22	2	,003	,0009	-	,003	31 √ 8	1.1.1	,003	100
	ом.	-117,62	9,2	2	,001	,00043	-	,001	.20 √ 8	1.1.1	,001	100
	юм.	81,05	32,22	2	,001	,00043	-	,001	27 7 8	1.1.1	,001	100
	ом.	99,08	-123,35	2	,001	,00043	-	,001	8 1/2 00	1.1.1	,001	100
	ом.	-99,59	-146,37	2	,001	,00043	-	,001	47 ∠ 8	1.1.1	,001	100
	(ил.	-327,4	127,6	2	,004	,00113	-	,004	20 ₹ 8	1.1.1	,004	100
	(ил.	-173,9	246,7	2	,003	,0009	-	,003	.50 ₹ 8	1.1.1	,003	100
	(ил.	183,3	238,7	2	,003	,00102	-	,003	14 7 8	1.1.1	,003	100
	(ил.	614,5	-211,1	2	,006	,00166	-	,006	84 → 8	1.1.1	,006	100
	(ил.	463,7	-182	2	,005	,0014	-	,005	85 → 8	1.1.1	,005	100
	(ил.	424	-97,3	2	,004	,0013	-	,004	75 → 8	1.1.1	,004	100

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.2.6.

Таблица № 1.2.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

	Коорд	инаты	Расчетная ко	онцентрация		Вклад		Ветер
Nº	X	Υ	д.ПДК	MΓ/M³	Фон, д.ПДК	предпри ятия, д.ПДК	направл., '	скорость, м/с
1	2	3	4	5	6	7	8	9
1	-1498.5	-1160	0,006	0,00167	-	0,006	53 ∠	8
2	-1298.5	-1160	0,006	0,00173	-	0,006	49 ∠	8
3	-1098.5	-1160	0,006	0,0018	-	0,006	45 ∠	8
4	-898.52	-1160	0,006	0,00184	-	0,006	39 ∠	8
5	-698.52	-1160	0,006	0,00187	-	0,006	32 ∠	8
6	-498.52	-1160	0,006	0,00188	-	0,006	24 ∠	8
7	-298.52	-1160	0,006	0,00188	-	0,006	15 ↓	8
8	-98.52	-1160	0,006	0,00187	-	0,006	5 →	8
9	101.48	-1160	0,006	0,00186	-	0,006	354 ↓	8
10	301.48	-1160	0,006	0,00187	-	0,006	344 ↓	8
11	501.48	-1160	0,006	0,00187	-	0,006	335 🛚 🖂	8


	Коорд	цинаты	Расчетная концентрация			Вклад	Ве	тер
Nº	X	Y	д.ПДК	Mr/M³	Фон, д.ПДК	предпри ятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
12	701.48	-1160	0,006	0,00185	-	0,006	327 🖫	8
13	901.48	-1160	0,006	0,00182	-	0,006	320 🛚	8
14	1101.48	-1160	0,006	0,00178	-	0,006	315 🗓	8
15	1301.48	-1160	0,006	0,00172	-	0,006	310 🗓	8
16	-1498.5	-960.02	0,006	0,00172	-	0,006	59 🗹	8
17	-1298.5 -1098.5	-960.02	0,006	0,0018	-	0,006	55 <u>L</u>	8
18 19	-1098.5 -898.52	-960.02 -960.02	0,006 0,006	0,00185 0.0019	-	0,006 0,006	50 ∠ 45 ∠	8
20	-698.52	-960.02	0,006	0,0019	-	0,006	45 ∠ 37 ∠	8
21	-498.52	-960.02	0,006	0,0019	_	0,006	28 🗹	8
22	-298.52	-960.02	0,006	0,0013	_	0,006	18 \ \	8
23	-98.52	-960.02	0,006	0,0018	_	0,006	6 \ \	8
24	101.48	-960.02	0,006	0,00178	_	0,006	353 ↓	8
25	301.48	-960.02	0,006	0,0018	-	0,006	341 ↓	8
26	501.48	-960.02	0,006	0,00187	-	0,006	331 🗓	8
27	701.48	-960.02	0,006	0,0019	-	0,006	322 🖫	8
28	901.48	-960.02	0,006	0,00187	-	0,006	315 🛚 🗵	8
29	1101.48	-960.02	0,006	0,00184	-	0,006	309 🛚 🗸	8
30	1301.48	-960.02	0,006	0,00177	-	0,006	305 🛚 🗸	8
31	-1498.5	-760.02	0,006	0,00177	-	0,006	65 ∠	8
32	-1298.5	-760.02	0,006	0,00184		0,006	61 ∠	8
33	-1098.5	-760.02	0,006	0,0019	-	0,006	57 ∠	8
34	-898.52	-760.02	0,006	0,00193	-	0,006	52 ∠	8
35	-698.52	-760.02	0,006	0,0019	ı	0,006	44 ∠	8
36	-498.52	-760.02	0,006	0,0018	-	0,006	35 ∠	8
37	-298.52	-760.02	0,006	0,0017	-	0,006	22 ↓	8
38	-98.52	-760.02	0,005	0,0016	-	0,005	7 ↓	8
39	101.48	-760.02	0,005	0,0016	-	0,005	351 ↓	8
40	301.48	-760.02	0,006	0,00167	-	0,006	336 🛚 🖂	8
41	501.48	-760.02	0,006	0,0018	-	0,006	324 🛚	8
42	701.48	-760.02	0,006	0,0019	-	0,006	315 🛚 🗸	8
43	901.48	-760.02	0,006	0,0019	-	0,006	308 7	8
44	1101.48	-760.02	0,006	0,00188	-	0,006	302 🗓	8
45	1301.48	-760.02	0,006	0,00182	-	0,006	298 🗓	8
46	-1498.5	-560.02	0,006	0,0018	-	0,006	71 ←	8
47	-1298.5	-560.02	0,006	0,00187	-	0,006	69 ←	8
48	-1098.5	-560.02	0,006	0,00193	-	0,006	65 ∠ 61 ∠	8
50	-898.52 -698.52	-560.02 -560.02	0,006 0,006	0,00193 0,00185	-	0,006 0,006	54 🗹	8
51	-498.52	-560.02	0,006	0,00183	_	0,006	44 Ľ	8
52	-298.52	-560.02	0,005	0,0017	_	0,005	30 🗹	8
53	-98.52	-560.02	0,003	0,00148	-	0,003	10 \(\psi \)	8
54	101.48	-560.02	0,004	0,00127	_	0,004	348 ↓	8
55	301.48	-560.02	0,005	0,00125	_	0,005	328 🗓	8
56	501.48	-560.02	0,006	0,00143	-	0,006	315	8
57	701.48	-560.02	0,006	0,00183	-	0,006	305 🗓	8
58	901.48	-560.02	0,006	0,00192	-	0,006	299 🖫	8
59	1101.48	-560.02	0,006	0,0019	-	0,006	294 🖫	8
60	1301.48	-560.02	0,006	0,00186	-	0,006	291 →	8
61	-1498.5	-360.02	0,006	0,00182	-	0,006	79 ←	8
62	-1298.5	-360.02	0,006	0,0019	-	0,006	77 ←	8
63	-1098.5	-360.02	0,006	0,00194	-	0,006	74 ←	8
64	-898.52	-360.02	0,006	0,0019	-	0,006	71 ←	8
65	-698.52	-360.02	0,006	0,0018	-	0,006	66 ∠	8
66	-498.52	-360.02	0,005	0,00156	-	0,005	58 ∠	8
67	-298.52	-360.02	0,004	0,00124	-	0,004	44 ∠	8
68	-98.52	-360.02	0,003	0,00084	-	0,003	19 ↓	8
69	101.48	-360.02	0,003	0,00082	-	0,003	337 ↘	8
70	301.48	-360.02	0,004	0,00121	-	0,004	314 🛚	8
71	501.48	-360.02	0,005	0,00156	-	0,005	301 🔽	8
72	701.48	-360.02	0,006	0,0018	-	0,006	293 🖫	8
73	901.48	-360.02	0,006	0,0019	-	0,006	288 →	8
74	1101.48	-360.02	0,006	0,00194	-	0,006	285 →	8
75	1301.48	-360.02	0,006	0,0019	-	0,006	283 →	8
76	-1498.5	-160.02	0,006	0,00184	-	0,006	86 ←	8
77	-1298.5	-160.02	0,006	0,0019		0,006	85 ←	8

	Коорд	цинаты	Расчетная ко	онцентрация		Вклад	Be	тер
Nº	X	Y	д.ПДК	мг/м ³	Фон, д.ПДК	предпри ятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
78	-1098.5	-160.02	0,006	0,00195	-	0,006	85 ←	8
79	-898.52	-160.02	0,006	0,0019	-	0,006	83 ←	8
80	-698.52	-160.02	0,006	0,00174	-	0,006	82 ←	8
81	-498.52	-160.02	0,005	0,00143	-	0,005	78 ←	8
82	-298.52	-160.02	0,003	0,00096	-	0,003	71 ←	8
83	-98.52 101.48	-160.02	0,002	0,00045 0.00048	-	0,002	44 🗹	8
84 85	301.48	-160.02 -160.02	0,002 0,003	0,00048	-	0,002 0,003	308 <u>\</u> 288 →	8
86	501.48	-160.02	0,005	0,00103	_	0,005	281 →	8
87	701.48	-160.02	0,003	0,00147	-	0,005	278 →	8
88	901.48	-160.02	0,006	0,00176	-	0,006	276 →	8
89	1101.48	-160.02	0,006	0,00195	_	0,006	275 →	8
90	1301.48	-160.02	0,006	0,0019	-	0,006	274 →	8
91	-1498.5	39.98	0,006	0,00183	-	0,006	94 ←	8
92	-1298.5	39.98	0,006	0,0019	-	0,006	94 ←	8
93	-1098.5	39.98	0,006	0,00195	-	0,006	95 ←	8
94	-898.52	39.98	0,006	0,0019	-	0,006	96 ←	8
95	-698.52	39.98	0,006	0,00174	-	0,006	98 ←	8
96	-498.52	39.98	0,005	0,00143	-	0,005	101 ←	8
97	-298.52	39.98	0,003	0,00097	-	0,003	108 ←	8
98	-98.52	39.98	0,001	0,00042	-	0,001	130 ↖	8
99	101.48	39.98	0,002	0,00049	-	0,002	230 🗷	8
100	301.48	39.98	0,003	0,001	-	0,003	253 →	8
101	501.48	39.98	0,005	0,00147	-	0,005	259 →	8
102	701.48	39.98	0,006	0,00176	-	0,006	262 →	8
103	901.48	39.98	0,006	0,0019	-	0,006	264 →	8
104	1101.48	39.98	0,007	0,00195	-	0,007	265 →	8
105	1301.48	39.98	0,006	0,0019	-	0,006	266 →	8
106	-1498.5	239.98	0,006	0,00182	-	0,006	101 ←	8
107	-1298.5	239.98	0,006	0,0019	-	0,006	103 ←	8
108	-1098.5	239.98	0,006	0,00194	-	0,006	105 ← 108 ←	8
109	-898.52	239.98	0,006	0,0019	-	0,006		8
110 111	-698.52 -498.52	239.98 239.98	0,006 0,005	0,00177 0,00153	-	0,006 0,005	113 K	8
111	-498.52	239.98	0,003	0,00133	-	0,003	136 5	8
113	-98.52	239.98	0,004	0,00110	-	0,004	160 ↑	8
114	101.48	239.98	0,003	0,00086	_	0,003	202 ↑	8
115	301.48	239.98	0,004	0,00127	_	0,004	227 7	8
116	501.48	239.98	0,005	0,0016	-	0,005	240 7	8
117	701.48	239.98	0,006	0,0018	-	0,006	247 7	8
118	901.48	239.98	0,006	0,00192	-	0,006	252 →	8
119	1101.48	239.98	0,006	0,00194	-	0,006	255 →	8
120	1301.48	239.98	0,006	0,0019	-	0,006	257 →	8
121	-1498.5	439.98	0,006	0,0018	-	0,006	108 ←	8
122	-1298.5	439.98	0,006	0,00187	-	0,006	111 ←	8
123	-1098.5	439.98	0,006	0,0019	-	0,006	115 🤼	8
124	-898.52	439.98	0,006	0,0019	-	0,006	119 🤼	8
125	-698.52	439.98	0,006	0,00182	-	0,006	126 🤼	8
126	-498.52	439.98	0,006	0,00165	-	0,006	135 🤼	8
127	-298.52	439.98	0,005	0,00142	-	0,005	150 🤨	8
128	-98.52	439.98	0,004	0,00123	-	0,004	170 ↑	8
129	101.48	439.98	0,004	0,00127	-	0,004	193 ↑	8
130	301.48	439.98	0,005	0,0015	-	0,005	212 7	8
131 132	501.48 701.48	439.98 439.98	0,006 0,006	0,00172	-	0,006	226 <i>7</i> 235 <i>7</i>	8
132	701.48 901.48	439.98	0,006	0,00186 0,00194	-	0,006	235 /	8
133	1101.48	439.98	0,006	0,00194		0,006 0,006	241 /	8
135	1301.48	439.98	0,006	0,00192	-	0,006	249 →	8
136	-1498.5	639.98	0,006	0,00187	_	0,006	115 K	8
137	-1298.5	639.98	0,006	0,00170	-	0,006	118 5	8
138	-1098.5	639.98	0,006	0,00103	-	0,006	123 K	8
139	-898.52	639.98	0,006	0,0019	-	0,006	128 🔨	8
140	-698.52	639.98	0,006	0,00187	-	0,006	135 🤼	8
141	-498.52	639.98	0,006	0,00178	-	0,006	145	8
142	-298.52	639.98	0,006	0,00165	-	0,006	158 ↑	8
143	-98.52	639.98	0,005	0,00158	-	0,005	173 ↑	8

Продолжение таблицы 1.2.6

	Коорд	цинаты	Расчетная к	онцентрация		Вклад	Be	тер
Nº	х	Y	д.ПДК	MΓ/M³	Фон, д.ПДК	предпри ятия, д.ПДК	направл.,°	скорость, м/с
1	2	3	4	5	6	7	8	9
144	101.48	639.98	0,005	0,0016	-	0,005	189 ↑	8
145	301.48	639.98	0,006	0,0017	-	0,006	204 🗷	8
146	501.48	639.98	0,006	0,00182	-	0,006	216 🗷	8
147	701.48	639.98	0,006	0,0019	-	0,006	226 🗷	8
148	901.48	639.98	0,006	0,00192	-	0,006	233 7	8
149	1101.48	639.98	0,006	0,0019	-	0,006	238 🗷	8
150	1301.48	639.98	0,006	0,00183	-	0,006	242 🗷	8
151	-1498.5	839.98	0,006	0,00172	-	0,006	121 ┌	8
152	-1298.5	839.98	0,006	0,0018	-	0,006	125 🤼	8
153	-1098.5	839.98	0,006	0,00184	-	0,006	129 ┌	8
154	-898.52	839.98	0,006	0,00188	-	0,006	135 ┌	8
155	-698.52	839.98	0,006	0,0019	=	0,006	142 ┌	8
156	-498.52	839.98	0,006	0,00186	-	0,006	151 ┖	8
157	-298.52	839.98	0,006	0,0018	-	0,006	162 ↑	8
158	-98.52	839.98	0,006	0,00177	-	0,006	174 ↑	8
159	101.48	839.98	0,006	0,0018	-	0,006	187 ↑	8
160	301.48	839.98	0,006	0,00183	-	0,006	199 ↑	8
161	501.48	839.98	0,006	0,0019	-	0,006	210 🗷	8
162	701.48	839.98	0,006	0,0019	-	0,006	218 🗷	8
163	901.48	839.98	0,006	0,0019	-	0,006	225 🗷	8
164	1101.48	839.98	0,006	0,00185	-	0,006	231 🗷	8
165	1301.48	839.98	0,006	0,0018	-	0,006	236 🗷	8
166	-1498.5	1039.98	0,006	0,00166	-	0,006	126 ┌	8
167	-1298.5	1039.98	0,006	0,00173	-	0,006	130 ┖	8
168	-1098.5	1039.98	0,006	0,0018	-	0,006	135 ┖	8
169	-898.52	1039.98	0,006	0,00183	-	0,006	141 🤼	8
170	-698.52	1039.98	0,006	0,00186	-	0,006	148 🤼	8
171	-498.52	1039.98	0,006	0,00187	-	0,006	156 ┖	8
172	-298.52	1039.98	0,006	0,00187	-	0,006	165 ↑	8
173	-98.52	1039.98	0,006	0,00186	-	0,006	175 个	8
174	101.48	1039.98	0,006	0,00187	-	0,006	186 ↑	8
175	301.48	1039.98	0,006	0,00188	-	0,006	196 ↑	8
176	501.48	1039.98	0,006	0,0019	-	0,006	205 🗷	8
177	701.48	1039.98	0,006	0,00187	-	0,006	213 7	8
178	901.48	1039.98	0,006	0,00184	-	0,006	220 🗷	8
179	1101.48	1039.98	0,006	0,0018	-	0,006	225 🗷	8
180	1301.48	1039.98	0,006	0,00173	-	0,006	230 🗷	8

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:5000** на рисунке **1.2.1**.

Картограмма значений наибольших концен менее 0,05

1.3 Мажорантный расчет загрязнения по всем веществам и группам суммаций

Расчёт загрязнения для мажоранты проводится по всем источникам загрязнения атмосферы и по всем веществам и группам суммации. При этом результат расчёта для каждой расчётной точки представляет собой наибольшее значение из максимальных расчётных концентраций, полученных для данной точки отдельно по каждому из веществ и групп суммации.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.3.1.

Таблица № 1.3.1 - Параметры расчетных точек

		Координаты		
Наименование	Х	٧	высота,	Тип точки
	^	•	M	
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	157,45	192,45	2	Точка на границе ОС33
2	290,83	-57,07	2	Точка на границе ОС33
3	77,84	-344,25	2	Точка на границе ОС33
4	-273,93	-198,54	2	Точка на границе ОС33
5	-231,36	144,22	2	Точка на границе ОС33
6	-117,62	9,2	2	Точка в промзоне
7	81,05	32,22	2	Точка в промзоне
8	99,08	-123,35	2	Точка в промзоне
9	-99,59	-146,37	2	Точка в промзоне
10	-327,4	127,6	2	Точка в жилой зоне
11	-173,9	246,7	2	Точка в жилой зоне
12	183,3	238,7	2	Точка в жилой зоне
13	614,5	-211,1	2	Точка в жилой зоне
14	463,7	-182	2	Точка в жилой зоне
15	424	-97,3	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.3.2.

Таблица № 1.3.2 - Параметры расчетных площадок

Наименование	точка 1		точка	2	рина, м	сота, м	сетки, м	г СЗЗ, м
	X_1	Y ₁	X ₂	Y ₂				
1	2	3	4	5	6	7	8	9
	-1498,52	-9,13	1460,29	-9,13	01,779	2	200	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.3.3.

Таблица № 1.3.3 - Параметры источников загрязнения атмосферы

				Пар	аметры ГВО	2	Ко	ординаты			Опас.	Загря	зняющее веще	ство	Макс.	Расст. до
Nº	_	Bulco	Диам				X ₁	Y ₁		К	скор.				конц-я,	ма-ксиму-
ИЗА	Гип			10071 11/6	ьем, м³/с	- °C									д.ПДК	ма, м
NISA	ľ	ia, ivi	eip, m	JUCIB, M/C	bew, M /C	III., C	X ₂	Y ₂	ина, м	рел	ветра, м/с				скорос	объем,
											M/C				ть, м/с	M³/C
1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	6
Объе	KT:		1. Объ	ект №1												
Площ	адк	a:	1. Пло	цадка №1												
Цех:			1. Цех	Nº1												
1	4	3	150	5	88357,3	20	200	110	200	1	1	4	3	150	5	88357,3
							350	260								

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.3.4.

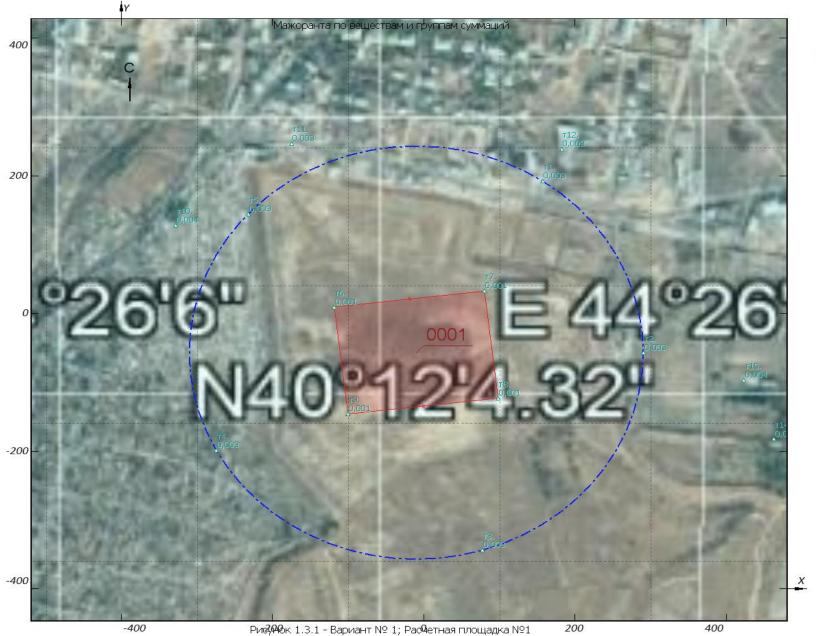
Таблица № 1.3.4 - Значения максимальных концентраций в расчетных точках

		Ко	ординаты			четная ентрация	Фон,	Вклад	Ветер: направлен		Вклад	ИЗА
Наименование	Тип	х	Υ	высота	д.ПДК	код ЗВ	д.ПДК	предпр иятия, д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	Х	Y
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площадка 1(СК Основная СК)												
1	OC33	157,45	192,45	2	0,003	2908	-	0,003	215 7 8	1.1.1	0,003	100
2	OC33	290,83	-57,07	2	0,003	2908	-	0,003	270 → 8	1.1.1	0,003	100
3	OC33	77,84	-344,25	2	0,003	2908	-	0,003	339 ↓ 8	1.1.1	0,003	100
4	OC33	-273,93	-198,54	2	0,003	2908	-	0,003	63 ∠ 8	1.1.1	0,003	100
5	OC33	-231,36	144,22	2	0,003	2908	-	0,003	131 √ 8	1.1.1	0,003	100
6	Пром.	-117,62	9,2	2	0,001	2908	-	0,001	120 √ 8	1.1.1	0,001	100
7	Пром.	81,05	32,22	2	0,001	2908	-	0,001	227 🗷 8	1.1.1	0,001	100
8	Пром.	99,08	-123,35	2	0,001	2908	-	0,001	300 7 8	1.1.1	0,001	100
9	Пром.	-99,59	-146,37	2	0,001	2908	-	0,001	47 ∠ 8	1.1.1	0,001	100
10	Жил.	-327,4	127,6	2	0,004	2908	-	0,004	120 √ 8	1.1.1	0,004	100
11	Жил.	-173,9	246,7	2	0,003	2908	-	0,003	150 ₹ 8	1.1.1	0,003	100
12	Жил.	183,3	238,7	2	0,003	2908	-	0,003	214 7 8	1.1.1	0,003	100
13	Жил.	614,5	-211,1	2	0,006	2908	-	0,006	284 → 8	1.1.1	0,006	100
14	Жил.	463,7	-182	2	0,005	2908	-	0,005	285 → 8	1.1.1	0,005	100
15	Жил.	424	-97,3	2	0,004	2908	-	0,004	275 → 8	1.1.1	0,004	100

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.3.5.

Таблица № 1.3.5 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

	Коорд	инаты	Расчетная к	онцентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
1	-1498.5	-1160	0,006	2908	-	0,006	53 ∠	8
2	-1298.5	-1160	0,006	2908	-	0,006	49 ∠	8
3	-1098.5	-1160	0,006	2908	-	0,006	45 ∠	8
4	-898.52	-1160	0,006	2908	-	0,006	39 ∠	8
5	-698.52	-1160	0,006	2908	-	0,006	32 ∠	8
6	-498.52	-1160	0,006	2908	-	0,006	24 ∠	8
7	-298.52	-1160	0,006	2908	-	0,006	15 ↓	8
8	-98.52	-1160	0,006	2908	-	0,006	5 ↓	8
9	101.48	-1160	0,006	2908	-	0,006	354 ↓	8
10	301.48	-1160	0,006	2908	-	0,006	344 ↓	8
11	501.48	-1160	0,006	2908	-	0,006	335 🛚	8
12	701.48	-1160	0,006	2908	-	0,006	327 ⅓	8
13	901.48	-1160	0,006	2908	-	0,006	320 ⅓	8
14	1101.48	-1160	0,006	2908	-	0,006	315 🛚	8
15	1301.48	-1160	0,006	2908	-	0,006	310 🛚	8
16	-1498.5	-960.02	0,006	2908	-	0,006	59 ∠	8
17	-1298.5	-960.02	0,006	2908	-	0,006	55 ∠	8
18	-1098.5	-960.02	0,006	2908	-	0,006	50 ∠	8
19	-898.52	-960.02	0,006	2908	-	0,006	45 ∠	8
20	-698.52	-960.02	0,006	2908	-	0,006	37 ∠	8
21	-498.52	-960.02	0,006	2908	-	0,006	28 ∠	8
22	-298.52	-960.02	0,006	2908	-	0,006	18 ↓	8
23	-98.52	-960.02	0,006	2908	-	0,006	6 ↓	8
24	101.48	-960.02	0,006	2908	-	0,006	353 ↓	8
25	301.48	-960.02	0,006	2908		0,006	341 ↓	8
26	501.48	-960.02	0,006	2908	-	0,006	331 🗸	8
27	701.48	-960.02	0,006	2908	-	0,006	322 ⅓	8
28	901.48	-960.02	0,006	2908	-	0,006	315 🛚	8


	Коорд	инаты	Расчетная і	концентрация		Вклад	Be	тер
Nº	Х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
29	1101.48	-960.02	0,006	2908	-	0,006	309 🗸	8
30	1301.48	-960.02	0,006	2908	-	0,006	305 ⅓	8
31	-1498.5	-760.02	0,006	2908	-	0,006	65 ∠	8
32	-1298.5	-760.02	0,006	2908	-	0,006	61 🗹	8
33 34	-1098.5 -898.52	-760.02 -760.02	0,006	2908 2908	-	0,006	57 ∠ 52 ∠	8
35	-698.52	-760.02	0,006	2908	_	0,006	44 🗹	8
36	-498.52	-760.02	0,006	2908	_	0,006	35 ∠	8
37	-298.52	-760.02	0,006	2908	-	0,006	22 ↓	8
38	-98.52	-760.02	0,005	2908	-	0,005	7 ↓	8
39	101.48	-760.02	0,005	2908	-	0,005	351 ↓	8
40	301.48	-760.02	0,006	2908	-	0,006	336 ⅓	8
41	501.48	-760.02	0,006	2908	-	0,006	324 🛚	8
42	701.48	-760.02	0,006	2908	-	0,006	315 🗓	8
43	901.48	-760.02	0,006	2908	-	0,006	308 🗵	8
44 45	1101.48 1301.48	-760.02 -760.02	0,006	2908 2908	-	0,006	302 \(\sigma\)	8
46	-1498.5	-560.02	0,006	2908	_	0,006	71 ←	8
47	-1298.5	-560.02	0,006	2908	-	0,006	69 ←	8
48	-1098.5	-560.02	0,006	2908	-	0,006	65 ∠	8
49	-898.52	-560.02	0,006	2908	-	0,006	61 ∠	8
50	-698.52	-560.02	0,006	2908	-	0,006	54 ∠	8
51	-498.52	-560.02	0,006	2908	-	0,006	44 ∠	8
52	-298.52	-560.02	0,005	2908	-	0,005	30 ∠	8
53	-98.52	-560.02	0,004	2908	-	0,004	10 ↓	8
54	101.48	-560.02	0,004	2908	-	0,004	348 ↓	8
55	301.48	-560.02	0,005	2908	-	0,005	328 🗓	8
56 57	501.48 701.48	-560.02 -560.02	0,006	2908 2908	-	0,006	315 \(\sigma\)	8
58	901.48	-560.02	0,006	2908	_	0,006	299 🗓	8
59	1101.48	-560.02	0,006	2908	_	0,006	294 🛚	8
60	1301.48	-560.02	0,006	2908	-	0,006	291 →	8
61	-1498.5	-360.02	0,006	2908	-	0,006	79 ←	8
62	-1298.5	-360.02	0,006	2908	-	0,006	77 ←	8
63	-1098.5	-360.02	0,006	2908	-	0,006	74 ←	8
64	-898.52	-360.02	0,006	2908	-	0,006	71 ←	8
65	-698.52	-360.02	0,006	2908	-	0,006	66 ∠	8
66 67	-498.52 -298.52	-360.02 -360.02	0,005	2908 2908	-	0,005 0,004	58 ∠ 44 ∠	8
68	-98.52	-360.02	0,004	2908	_	0,004	19 ↓	8
69	101.48	-360.02	0,003	2908	_	0,003	337 🗓	8
70	301.48	-360.02	0,004	2908	-	0,004	314 🛚	8
71	501.48	-360.02	0,005	2908	-	0,005	301 🗵	8
72	701.48	-360.02	0,006	2908	-	0,006	293 🛚	8
73	901.48	-360.02	0,006	2908	-	0,006	288 →	8
74	1101.48	-360.02	0,006	2908	-	0,006	285 →	8
75	1301.48	-360.02	0,006	2908	-	0,006	283 →	8
76 77	-1498.5 -1298.5	-160.02 -160.02	0,006	2908 2908	-	0,006 0,006	86 ← 85 ←	8
77	-1298.5	-160.02 -160.02	0,006	2908	-	0,006	85 ←	8
79	-898.52	-160.02	0,006	2908	_	0,006	83 ←	8
80	-698.52	-160.02	0,006	2908	-	0,006	82 ←	8
81	-498.52	-160.02	0,005	2908	-	0,005	78 ←	8
82	-298.52	-160.02	0,003	2908	-	0,003	71 ←	8
83	-98.52	-160.02	0,002	2908	-	0,002	44 ∠	8
84	101.48	-160.02	0,002	2908	-	0,002	308 🗸	8
85	301.48	-160.02	0,003	2908	-	0,003	288 →	8
86	501.48	-160.02	0,005	2908	-	0,005	281 →	8
87 88	701.48 901.48	-160.02 -160.02	0,006	2908 2908	-	0,006	278 → 276 →	8
89	1101.48	-160.02	0,006	2908	-	0,006	275 →	8
90	1301.48	-160.02	0,006	2908	-	0,006	274 →	8
91	-1498.5	39.98	0,006	2908	-	0,006	94 ←	8
92	-1298.5	39.98	0,006	2908	-	0,006	94 ←	8
93	-1098.5	39.98	0,006	2908	-	0,006	95 ←	8
94	-898.52	39.98	0,006	2908	-	0,006	96 ←	8

	Коорд	инаты	Расчетная і	концентрация		Вклад	Ве	тер
Nº	х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
95	-698.52	39.98	0,006	2908	-	0,006	98 ←	8
96	-498.52	39.98	0,005	2908	-	0,005	101 ←	8
97	-298.52	39.98	0,003	2908	-	0,003	108 ←	8
98 99	-98.52 101.48	39.98 39.98	0,001	2908 2908	_	0,001	130 ∇ 230 7	8
100	301.48	39.98	0,002	2908	_	0,002	253 →	8
101	501.48	39.98	0,005	2908	_	0,005	259 →	8
102	701.48	39.98	0,006	2908	_	0,006	262 →	8
103	901.48	39.98	0,006	2908	-	0,006	264 →	8
104	1101.48	39.98	0,007	2908	-	0,007	265 →	8
105	1301.48	39.98	0,006	2908	-	0,006	266 →	8
106	-1498.5	239.98	0,006	2908	-	0,006	101 ←	8
107	-1298.5	239.98	0,006	2908	-	0,006	103 ←	8
108	-1098.5	239.98	0,006	2908	-	0,006	105 ←	8
109	-898.52	239.98	0,006	2908	-	0,006	108 ←	8
110	-698.52 -498.52	239.98 239.98	0,006	2908 2908	-	0,006	113 万	8
111 112	-498.52	239.98	0,003	2908	-	0,005	121 ↖ 136 ↖	8
113	-98.52	239.98	0,004	2908	_	0,004	160 个	8
114	101.48	239.98	0,003	2908	-	0,003	202 ↑	8
115	301.48	239.98	0,003	2908	-	0,004	227 7	8
116	501.48	239.98	0,005	2908	-	0,005	240 🗷	8
117	701.48	239.98	0,006	2908	-	0,006	247 🗷	8
118	901.48	239.98	0,006	2908	-	0,006	252 →	8
119	1101.48	239.98	0,006	2908	-	0,006	255 →	8
120	1301.48	239.98	0,006	2908	-	0,006	257 →	8
121	-1498.5	439.98	0,006	2908	-	0,006	108 ←	8
122	-1298.5	439.98	0,006	2908	-	0,006	111 ←	8
123 124	-1098.5 -898.52	439.98 439.98	0,006	2908 2908	-	0,006	115 🤨	8
125	-698.52	439.98	0,006	2908	-	0,006	119 ┖ 126 ┖	8
126	-498.52	439.98	0,006	2908	_	0,006	135 🔨	8
127	-298.52	439.98	0,005	2908	_	0,005	150 🕏	8
128	-98.52	439.98	0,004	2908	-	0,004	170 ↑	8
129	101.48	439.98	0,004	2908	-	0,004	193 ↑	8
130	301.48	439.98	0,005	2908	-	0,005	212 🗷	8
131	501.48	439.98	0,006	2908	-	0,006	226 🗷	8
132	701.48	439.98	0,006	2908	-	0,006	235 🗷	8
133	901.48	439.98	0,006	2908	-	0,006	241 7	8
134	1101.48	439.98	0,006	2908	-	0,006	246 7	8
135 136	1301.48 -1498.5	439.98 639.98	0,006	2908 2908	-	0,006 0,006	249 → 115 下	8
137	-1298.5	639.98	0,006	2908	-	0,006	113 人	8
138	-1098.5	639.98	0,006	2908	-	0,006	123 🔨	8
139	-898.52	639.98	0,006	2908	-	0,006	128 🔨	8
140	-698.52	639.98	0,006	2908	-	0,006	135 ↖	8
141	-498.52	639.98	0,006	2908	-	0,006	145 ↖	8
142	-298.52	639.98	0,006	2908	-	0,006	158 ↑	8
143	-98.52	639.98	0,005	2908	-	0,005	173 ↑	8
144	101.48	639.98	0,005	2908	-	0,005	189 ↑	8
145	301.48	639.98	0,006	2908	-	0,006	204 7	8
146	501.48	639.98	0,006	2908	-	0,006	216 7	8
147 148	701.48 901.48	639.98 639.98	0,006	2908 2908	-	0,006	226 7 233 7	8
148	1101.48	639.98	0,006	2908	-	0,006	238 7	8
150	1301.48	639.98	0,006	2908	-	0,006	242 7	8
151	-1498.5	839.98	0,006	2908	-	0,006	121 🔨	8
152	-1298.5	839.98	0,006	2908	-	0,006	125 ↖	8
153	-1098.5	839.98	0,006	2908	-	0,006	129 ↖	8
154	-898.52	839.98	0,006	2908	-	0,006	135 ↖	8
155	-698.52	839.98	0,006	2908	-	0,006	142 ↖	8
156	-498.52	839.98	0,006	2908	-	0,006	151 🔨	8
157	-298.52	839.98	0,006	2908	-	0,006	162 ↑	8
158	-98.52	839.98	0,006	2908	-	0,006	174 ↑ 197 ↑	8
159	101.48	839.98	0,006	2908	-	0,006	187 ↑	8
160	301.48	839.98	0,006	2908	-	0,006	199 个	8

Продолжение таблицы 1.3.5

	Коорд	инаты	Расчетная к	онцентрация		Вклад	Ве	тер
Nº	Х	Υ	д.ПДК	код ЗВ	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
161	501.48	839.98	0,006	2908	-	0,006	210 🗷	8
162	701.48	839.98	0,006	2908	-	0,006	218 🗷	8
163	901.48	839.98	0,006	2908	-	0,006	225 🗷	8
164	1101.48	839.98	0,006	2908	-	0,006	231 🗷	8
165	1301.48	839.98	0,006	2908	-	0,006	236 🗷	8
166	-1498.5	1039.98	0,006	2908	-	0,006	126 ↖	8
167	-1298.5	1039.98	0,006	2908	-	0,006	130 ↖	8
168	-1098.5	1039.98	0,006	2908	-	0,006	135 ┖	8
169	-898.52	1039.98	0,006	2908	-	0,006	141 ↖	8
170	-698.52	1039.98	0,006	2908	-	0,006	148 ↖	8
171	-498.52	1039.98	0,006	2908	-	0,006	156 ┖	8
172	-298.52	1039.98	0,006	2908	-	0,006	165 个	8
173	-98.52	1039.98	0,006	2908	-	0,006	175 个	8
174	101.48	1039.98	0,006	2908	-	0,006	186 个	8
175	301.48	1039.98	0,006	2908	-	0,006	196 个	8
176	501.48	1039.98	0,006	2908	-	0,006	205 🗷	8
177	701.48	1039.98	0,006	2908	-	0,006	213 🗷	8
178	901.48	1039.98	0,006	2908	-	0,006	220 🗷	8
179	1101.48	1039.98	0,006	2908	-	0,006	225 🗷	8
180	1301.48	1039.98	0,006	2908	-	0,006	230 🗷	8

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:5000** на рисунке 1.3.1.

Картограмма значений наибольших концен менее 0,05

Расчёт загрязнения атмосферы для ООО «Ереванян Базальт» унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр» Промплощадка N2

Расчёт загрязнения атмосферы выполнен в соответствии с ОНД-86 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий», с использованием унифицированной программы расчёта загрязнения атмосферы УПРЗА «ЭКО центр».

1.1 Исходные данные для проведения расчета загрязнения атмосферы

порог целесообразности по вкладу источников выброса: **0,05**; расчетный год **2020**.

Метеорологические характеристики и коэффициенты:

коэффициент, зависящий от температурной стратификации атмосферы: 200;

средняя температура наружного воздуха, °C: **33**; коэффициент рельефа: **1**.

Параметры перебора ветров:

направление, метео °: 0 - **360** (шаг 1); скорость, м/с: **0,5 - 26** (шаг 0,1).

Основная система координат - правая с ориентацией оси ОУ на Север.

Количество загрязняющих веществ в расчете - 3 (в том числе твердых - 1; жидких и газообразных - 2), групп суммации - 1. Перечень и коды веществ и групп суммации, участвующих в расчёте загрязнения атмосферы, с указанием класса опасности и предельно-допустимой концентрации (ПДК) либо ориентировочного безопасного уровня воздействия (ОБУВ), приведен в таблице 1.1.1.

Таблица № 1.1.1 - Перечень загрязняющих веществ и групп суммации

	Загрязняющее вещество	Класс	Предельно-допустимая концентрация, мг/м³				
иол	наименование	опасност	максимально	средне-	OEVB	используется	
код	паименование	И	-разовая	суточная	обув 6	в расчете	
1	2	3	4	5	6	7	
301	Азота диоксид	3	0,2	0,04	-	0,2	
337	Углерод оксид	4	5	3	-	5	
2908	Пыль неорганическая: SiO2 20-70%	3	0,3	0,1	-	0,3	

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.1.2.

Таблица № 1.1.2 - Параметры расчетных точек

Uaa		Координаты		T
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-114,86	-27	2	Точка в промзоне
2	71,45	-23,24	2	Точка в промзоне
3	77,4	-149,8	2	Точка в промзоне
4	-121	-145,8	2	Точка в промзоне
5	-33,56	216,13	2	Точка на границе ОС33
6	258,45	31,56	2	Точка на границе ОС33
7	213,17	-273,71	2	Точка на границе ОС33
8	-160,34	-348,01	2	Точка на границе ОС33
9	-317,55	-53,88	2	Точка на границе ОС33

Продолжение таблицы 1.1.2

Помисиоромио		Координаты		Тип точки
Наименование	X	Υ	высота, м	тип точки
1	2	3	4	5
10	438,5	145,9	2	Точка в жилой зоне
11	440,5	46,7	2	Точка в жилой зоне
12	686,6	-80,3	2	Точка в жилой зоне
13	613,2	141,9	2	Точка в жилой зоне
14	250	473,3	2	Точка в жилой зоне
15	119,1	481,2	2	Точка в жилой зоне
16	-117,1	517	2	Точка в жилой зоне
17	-307,6	298,7	2	Точка в жилой зоне
18	-490,1	12,9	2	Точка в жилой зоне
19	-654,8	-342,3	2	Точка в жилой зоне
20	-335,4	-542,7	2	Точка в жилой зоне
21	109,1	-632	2	Точка в жилой зоне
22	335,4	-483,2	2	Точка в жилой зоне
23	593,3	-479,2	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.1.3.

Таблица № 1.1.3 - Параметры расчетных площадок

			Координаты ср	единной линии				111	622
	Наименование	точі	ка 1	точ	Ширина, м	Высота <i>,</i> м	Шаг сетки, м	Шаг С33, м	
		X ₁	Y ₁	X ₂	Y ₂				
Ī	1	2	3	4	5	6	7	8	9
-	1	-900	-8,18	925,88	-8,18	1483,636	2	200	-

Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам, приведена в таблице 1.1.4.

Таблица № 1.1.4 - Характеристика нестационарности во времени источников загрязнения атмосферы и их не одновременности работы по группам

Nº N3A	расчет	Исключе ние из	режим	Срок действ ИЗА в расч	вия режима ётном году	Рабочий график	Принадлежность к группе источников, работающих не одновременно
	е	фона	а ИЗА	начало	окончание		
1	2	3	4	5	6	7	8
Объек	г:	1. Объе	кт №1 П	ромплощадк	a №2		
Площа	дка:	1. Плош	адка №:	1			
Цех:		1. Цех N	<u>101</u>				
1	+	+	-	01 января	31 декабря	-	-
2	+	+	-	01 января	31 декабря	-	-
3	+	+	-	01 января	31 декабря	-	-
4	+	+	-	01 января	31 декабря	-	-
5	+	+	-	01 января	31 декабря	-	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.1.5.

Таблица № 1.1.5 - Параметры источников загрязнения атмосферы

No		D		Пар	аметры ГВО		Ко	ординаты		,	Опас.	Загря	зняющее веще	ство	Макс.	Расст.
Nº N3A	ПИП	та, м	Диам етр, м		объем,	темп.,	X ₁	Y ₁	шири	К рел	скор. ветра,	код	масса	К	конц-я, д.ПДК	до ма- ксиму-
				м/с	M³/C	°C	X ₂	Y ₂	на, м		m/c		выброса, г/с	oc.	длідк	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объе	кт:		1. Объ	ект №1 Про	омплощад	ka №2					•				•	•
Плош	адк	a:	1. Плог	цадка №1												
Цех:			1. Цех	Nº1												
1	4	5	80	6	30159,3	20	-121	-18,8	54,6	1	274,56	2908	3,014	3	0,234	446,86
							-31,8	-17,93								
2	4	4	60	6	16964,6	20	-6	-50,16	53,8	1	257,4	2908	1,441	3	0,2	346,13
							71,45	-50,16								
3	4	5	80	4	20106,2	20	-25,8	-102,2	32,3	1	183,04	2908	0,648	3	0,075	364,86
							79,59	-100,54								
4	4	7	20	5	1570,8	20	-71,4	-129,9	29,2	1	47,667	2908	0,459	3	0,134	223,43
							-6	-133,9								
5	1	6	0,3	28,4	2,007	120	-6,86	-147,99	-	1	1,899	337	0,145	1	0,008	136,63
												301	0,05	1	0,067	136,63

1.2 Расчет загрязнения по веществу «301. Азота диоксид»

Полное наименование вещества с кодом 301 – Азота диоксид (Азот (IV) оксид). Максимально разовая предельно допустимая концентрация составляет 0,2 мг/м³, класс опасности 3.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 1 (в том числе: организованных - 1, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 m - 1; 11-20 m - нет; 21-29 m - нет; 30-50 m - нет; 51-100 m - нет; более 100 m - нет.

Суммарный выброс, учтенных в расчёте источников, составляет 0,05 грамм в секунду и 0 тонн в год. Расчётных точек — 23, расчётных площадок - 1 (узлов расчётной сетки - 80).

Максимальная расчётная приземная концентрация (См), выраженная в долях ПДК населенных мест, по расчётной площадке № 1 составляет:

- на границе C33 **0,052**, которая достигается в точке № $7 \times 213,17 \times 273,71$, при направлении ветра 303° , скорости ветра 2,2 м/c, в том числе: вклад источников предприятия 0,052;
- в жилой зоне **0,031**, которая достигается в точке № *11* X=*440,5* Y=*46,7*, при направлении ветра *248*°, скорости ветра *2,7* м/с, в том числе: вклад источников предприятия *0,031*.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.2.2.

Таблица № 1.2.2 - Параметры расчетных точек

		Координаты		T
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расч	етная площадка 1(СК	Основная СК)		
1	-114,86	-27	2	Точка в промзоне
2	71,45	-23,24	2	Точка в промзоне
3	77,4	-149,8	2	Точка в промзоне
4	-121	-145,8	2	Точка в промзоне
5	-33,56	216,13	2	Точка на границе ОС33
6	258,45	31,56	2	Точка на границе ОС33
7	213,17	-273,71	2	Точка на границе ОС33
8	-160,34	-348,01	2	Точка на границе ОС33
9	-317,55	-53,88	2	Точка на границе ОС33
10	438,5	145,9	2	Точка в жилой зоне
11	440,5	46,7	2	Точка в жилой зоне
12	686,6	-80,3	2	Точка в жилой зоне
13	613,2	141,9	2	Точка в жилой зоне
14	250	473,3	2	Точка в жилой зоне
15	119,1	481,2	2	Точка в жилой зоне
16	-117,1	517	2	Точка в жилой зоне
17	-307,6	298,7	2	Точка в жилой зоне
18	-490,1	12,9	2	Точка в жилой зоне
19	-654,8	-342,3	2	Точка в жилой зоне
20	-335,4	-542,7	2	Точка в жилой зоне
21	109,1	-632	2	Точка в жилой зоне
22	335,4	-483,2	2	Точка в жилой зоне
23	593,3	-479,2	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.2.3.

Таблица № 1.2.3 - Параметры расчетных площадок

		Координаты ср	единной линии				111	622
Наименование	точ	ка 1	точ	Ширина, м	Высота, м	Шаг сетки, м	Шаг C33, м	
	X_1	Y ₁	X ₂	Y ₂				
1	2	3	4	5	6	7	8	9
1	-900	-8,18	925,88	-8,18	1483,636	2	200	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.2.4.

Таблица № 1.2.4 - Параметры источников загрязнения атмосферы

				Параметры ГВС	Ко	ординаты		.,	Опас.	Загря	зняющее веще	ство	Макс.	Расст.		
Nº N3A	ПИП		Диам етр, м	скорость,	-	темп.,	X ₁	Y ₁		К рел	скор. ветра,	код	масса	K oc.	конц-я <i>,</i> д.ПДК	до ма- ксиму-
				м/с	M³/c	°C	X ₂	Y ₂	на, м		m/c		выброса, г/с		AA.	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объен	KT:		1. Объ	ект №1 Про	омплощад	ка №2										
Площ	адк	a:	1. Плоц	цадка №1												
Цех:			1. Цех	N º1												
5	1	6	0,3	28,4	2,007	120	-6	-133,9	-	1	1,899	301	0,05	1	0,067	136,63

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.2.5.

Таблица № 1.2.5 - Значения максимальных концентраций в расчетных точках

Наименование	Тип	Ко		Расчетная концентрация		Вклад предпр	Ветер: направлен ие;	Пл., Цех, ИЗА	Вклад ИЗА			
Пайменование	17111	Х	Υ	высот	д.ПДК	Mr/M³	д.ПДК	иятия, д.ПДК	скорость, °↑м/с	ти., цех, изл	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площад	цка 1(СК	Основная СК)					•					
1	Пром.	-114,86	-27	2	0,065	0,013	-	0,065	134 △ 2	1.1.5	0,065	100
2	Пром.	71,45	-23,24	2	0,067	0,0134	-	0,067	215 7 1,9	1.1.5	0,067	100
3	Пром.	77,4	-149,8	2	0,06	0,012	-	0,06	281 → 1,9	1.1.5	0,06	100
4	Пром.	-121	-145,8	2	0,067	0,0133	-	0,067	84 ← 1,9	1.1.5	0,067	100
5	OC33	-33,56	216,13	2	0,042	0,0084	-	0,042	175 个 2,4	1.1.5	0,042	100
6	OC33	258,45	31,56	2	0,046	0,0093	-	0,046	238 7 2,3	1.1.5	0,046	100
7	OC33	213,17	-273,71	2	0,052	0,0105	-	0,052	303 ≽ 2,2	1.1.5	0,052	100
8	OC33	-160,34	-348,01	2	0,052	0,0104	-	0,052	36 ∠ 2,2	1.1.5	0,052	100
9	OC33	-317,55	-53,88	2	0,045	0,009	-	0,045	104 ← 2,4	1.1.5	0,045	100
10	Жил.	438,5	145,9	2	0,028	0,0056	-	0,028	238 7 2,8	1.1.5	0,028	100

Наименование	Тип	Ко	ординаты			етная нтрация	Фон,	Вклад предпр	Ветер: направлен ие;	Пл., Цех, ИЗА	Вклад	ИЗА
Паименование	17111	Х	Υ	высот а, м	д.ПДК	MГ/M³	д.ПДК	иятия, д.ПДК	скорость, °↑м/с	пл., цех, изх	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
11	Жил.	440,5	46,7	2	0,031	0,0062	-	0,031	248 → 2,7	1.1.5	0,031	100
12	Жил.	686,6	-80,3	2	0,02	0,0039	-	0,02	266 → 3,2	1.1.5	0,02	100
13	Жил.	613,2	141,9	2	0,02	0,00406	-	0,02	246 🗷 3,2	1.1.5	0,02	100
14	Жил.	250	473,3	2	0,021	0,0042	-	0,021	203 7 3,1	1.1.5	0,021	100
15	Жил.	119,1	481,2	2	0,022	0,0045	-	0,022	192 个 3	1.1.5	0,022	100
16	Жил.	-117,1	517	2	0,021	0,0042	-	0,021	170 ↑ 3,1	1.1.5	0,021	100
17	Жил.	-307,6	298,7	2	0,028	0,0056	-	0,028	145 ₹ 2,8	1.1.5	0,028	100
18	Жил.	-490,1	12,9	2	0,029	0,0059	-	0,029	107 ← 2,8	1.1.5	0,029	100
19	Жил.	-654,8	-342,3	2	0,02	0,004	-	0,02	72 ← 3,2	1.1.5	0,02	100
20	Жил.	-335,4	-542,7	2	0,028	0,0056	-	0,028	39 ∠ 2,8	1.1.5	0,028	100
21	Жил.	109,1	-632	2	0,029	0,0058	-	0,029	347 ↓ 2,8	1.1.5	0,029	100
22	Жил.	335,4	-483,2	2	0,031	0,0061	-	0,031	316 🛭 2,7	1.1.5	0,031	100
23	Жил.	593,3	-479,2	2	0,02	0,00395	-	0,02	300 ⅓ 3,2	1.1.5	0,02	100

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.2.6.

Таблица № 1.2.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

Nº	Коорд	инаты	Расчетная ко	онцентрация	Фон, д.ПДК	Вклад предприятия,		Ве	тер
IV≅	Х	Y	д.ПДК	Mr/M³	Фон, д.пдк	д.ПДК	напра	вл., °	скорость, м/с
1	2	3	4	5	6	7	8		9
1	-900	-750	0,01	0,002	-	0,01	55	Ľ	0,5
2	-700	-750	0,013	0,00256	-	0,013	48	Ľ	3,8
3	-500	-750	0,016	0,00326	-	0,016	39	Ľ	3,4
4	-300	-750	0,02	0,004	-	0,02	26	Ľ	3,2
5	-100	-750	0,023	0,0045	-	0,023	9	\downarrow	3
6	100	-750	0,023	0,0045	-	0,023	350	\downarrow	3
7	300	-750	0,02	0,004	-	0,02	334	И	3,2
8	500	-750	0,016	0,0032	-	0,016	321	И	3,4
9	700	-750	0,013	0,0025	-	0,013	311	И	3,8
10	900	-750	0,01	0,002	-	0,01	304	И	0,5
11	-900	-550	0,012	0,00233	-	0,012	65	Ľ	4
12	-700	-550	0,016	0,00315	-	0,016	59	Ľ	3,5
13	-500	-550	0,022	0,0043	-	0,022	50	Ľ	3,1
14	-300	-550	0,029	0,0058	-	0,029	35	Ľ	2,8
15	-100	-550	0,035	0,007	-	0,035	13	\downarrow	2,6
16	100	-550	0,035	0,007	-	0,035	346	\	2,6
17	300	-550	0,029	0,0057	-	0,029	324	И	2,8
18	500	-550	0,021	0,00424	-	0,021	309	И	3,1
19	700	-550	0,015	0,0031	-	0,015	301	Я	3,5

Nº	Коорд	цинаты	Расчетная ко	онцентрация	Фон, д.ПДК	Вклад	Ветер			
Mō	Х	Υ	д.ПДК	MΓ/M³	Фон, д.пдк	предприятия <i>,</i> д.ПДК	направл., °		скорость, м/с	
1	2	3	4	5	6	7	8		9	
20	900	-550	0,011	0,0023	-	0,011	295	Я	4	
21	-900	-350	0,013	0,0026	-	0,013	76	←	3,8	
22	-700	-350	0,018	0,0037	-	0,018	73	←	3,3	
23	-500	-350	0,027	0,0054	-	0,027	66	Ľ	2,8	
24	-300	-350	0,041	0,0082	-	0,041	54	Ľ	2,5	
25	-100	-350	0,055	0,011	-	0,055	24	Ľ	2,2	
26	100	-350	0,055	0,011	-	0,055	334	И	2,2	
27	300	-350	0,04	0,008	-	0,04	305	Л	2,5	
28	500	-350	0,027	0,0053	-	0,027	293	И	2,9	
29	700	-350	0,018	0,0036	-	0,018	287	\rightarrow	3,3	
30	900	-350	0,013	0,00254	-	0,013	283	\rightarrow	3,8	
31	-900	-150	0,014	0,0027	-	0,014	89	←	3,7	
32	-700	-150	0,02	0,0039	-	0,02	89	←	3,2	
33	-500	-150	0,03	0,006	-	0,03	88	←	2,7	
34	-300	-150	0,048	0,0097	-	0,048	87	←	2,3	
35	-100	-150	0,064	0,0127	-	0,064	80	←	1,9	
36	100	-150	0,066	0,013	-	0,066	279	\rightarrow	1,9	
37	300	-150	0,047	0,0094	-	0,047	273	\rightarrow	2,3	
38	500	-150	0,029	0,0059	-	0,029	272	\rightarrow	2,8	
39	700	-150	0,019	0,0038	-	0,019	271	\rightarrow	3,2	
40	900	-150	0,013	0,00266	-	0,013	271	\rightarrow	3,7	
41	-900	50	0,013	0,0026	-	0,013	102	+	3,8	
42	-700	50	0,019	0,00375	-	0,019	105	←	3,3	
43	-500	50	0,028	0,0056	-	0,028	110	←	2,8	
44	-300	50	0,043	0,0085	-	0,043	122	Κ	2,4	
45	-100	50	0,059	0,0118	-	0,059	153	K	2,1	
46	100	50	0,058	0,0116	-	0,058	210	7	2,1	
47	300	50	0,042	0,0083	-	0,042	239	7	2,4	
48	500	50	0,027	0,0055	-	0,027	250	\rightarrow	2,8	
49	700	50	0,018	0,00366	-	0,018	255	\rightarrow	3,3	
50	900	50	0,013	0,00257	-	0,013	259	\rightarrow	3,8	
51	-900	250	0,012	0,0024	-	0,012	113	Κ	3,9	
52	-700	250	0,016	0,00325	-	0,016	119	K	3,4	
53	-500	250	0,023	0,0045	-	0,023	128	K	3	
54	-300	250	0,031	0,0062	-	0,031	143	Κ	2,7	
55	-100	250	0,038	0,0076	-	0,038	166	↑	2,5	
56	100	250	0,038	0,0075	-	0,038	195	\uparrow	2,5	
57	300	250	0,03	0,0061	-	0,03	219	7	2,7	
58	500	250	0,022	0,0044	-	0,022	233	7	3,1	
59	700	250	0,016	0,0032	-	0,016	241	7	3,5	
60	900	250	0,012	0,00234	-	0,012	247	7	4	

Продолжение таблицы 1.2.6

Nº	Коорд	инаты	Расчетная к	онцентрация	Фон, д.ПДК	Вклад предприятия,	Ве	тер
IV≅	Х	Y	д.ПДК	MΓ/M³	- Фон, д.п.д.	д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
61	-900	450	0,01	0,00205	-	0,01	123 🤼	4,3
62	-700	450	0,013	0,00265	-	0,013	130 ↖	3,7
63	-500	450	0,017	0,0034	-	0,017	140 ↖	3,4
64	-300	450	0,021	0,0043	-	0,021	153 ↖	3,1
65	-100	450	0,024	0,0049	-	0,024	171 个	3
66	100	450	0,024	0,0048	-	0,024	190 个	3
67	300	450	0,021	0,0042	-	0,021	208 🗷	3,1
68	500	450	0,017	0,0034	-	0,017	221 🗷	3,4
69	700	450	0,013	0,0026	-	0,013	230 🗷	3,8
70	900	450	0,01	0,002	-	0,01	237 🗷	4,1
71	-900	650	0,009	0,00182	-	0,009	131 ↖	0,5
72	-700	650	0,011	0,0021	-	0,011	138 ↖	4
73	-500	650	0,013	0,00257	-	0,013	148 ↖	3,8
74	-300	650	0,015	0,003	-	0,015	159 个	3,5
75	-100	650	0,016	0,00327	-	0,016	173 个	3,4
76	100	650	0,016	0,00326	-	0,016	188 ↑	3,4
77	300	650	0,015	0,00297	-	0,015	201 个	3,6
78	500	650	0,013	0,00254	-	0,013	213 🗷	3,8
79	700	650	0,01	0,0021	-	0,01	222 🗷	4,3
80	900	650	0,009	0,0018	-	0,009	229 🗷	0,5

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:5000** на рисунке **1.2.1**.

Картограмма значений наибольших концен менее 0,05

0,05 - 0,1

1.3 Расчет загрязнения по веществу «337. Углерод оксид»

Полное наименование вещества с кодом 337 — Углерод оксид. Максимально разовая предельно допустимая концентрация составляет 5 мг/ $м^3$, класс опасности 4.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 1 (в том числе: организованных - 1, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 1; 11-20 M - Het; 21-29 M - Het; 30-50 M - Het; 51-100 M - Het; более 100 M - Het.

Суммарный выброс, учтенных в расчёте источников, составляет 0,145 грамм в секунду и 0 тонн в год.

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.3.2.

Таблица № 1.3.2 - Параметры источников загрязнения атмосферы

Nº		D. 100	Пиол	Пар	аметры ГВО	0	Кос	Координаты Опас. За		Загрязняющее вещество			Макс.	Расст.		
ИЗА	ПИП		Диам етр, м			темп.,	X_1	Y ₁			ветра,	код	масса	К	конц-я, д.ПДК	до ма- ксиму-
				м/с	M³/C	°C	X ₂	Y ₂	на, м		M/c		выброса, г/с	oc.	A.IIAIN	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объен	⟨Т:		1. Объ	ект №1 Про	омплощад	ка №2										
Площ	адк	a:	1. Плог	цадка №1												
Цех:			1. Цех	Nº1												
5	1	6	0,3	28,4	2,007	120	-6	-133,9	-	1	1,899	337	0,145	1	0,008	136,63

Расчет не целесообразен, т.к. См меньше константы целесообразности расчетов: 0,00778<0,05.

1.4 Расчет загрязнения по веществу «2908. Пыль неорганическая: SiO2 20-70%»

Полное наименование вещества с кодом 2908 — Пыль неорганическая, содержащая 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.). Максимально разовая предельно допустимая концентрация составляет 0,3 мг/м³, класс опасности 3.

Количество источников загрязнения атмосферы, учтенных в расчёте составляет - 4 (в том числе: организованных - 4, неорганизованных - нет). Распределение источников по градациям высот составляет: 0-10 M - 4; 11-20 M - Het; 21-29 M - Het; 30-50 M - Het; 51-100 M - Het; более 100 M - Het.

Суммарный выброс, учтенных в расчёте источников, составляет 5,562 грамм в секунду и 0 тонн в год.

Расчётных точек – 23, расчётных площадок - 1 (узлов расчётной сетки - 80).

Максимальная расчётная приземная концентрация (См), выраженная в долях ПДК населенных мест, по расчётной площадке № 1 составляет:

- на границе СЗЗ **0,092**, которая достигается в точке № 8 X=-160,34 Y=-348,01, при направлении ветра 32°, скорости ветра 26 м/с, в том числе: вклад источников предприятия 0,092;
- в жилой зоне **0,09**, которая достигается в точке № 20 X=-335,4 Y=-542,7, при направлении ветра 37°, скорости ветра 26 м/с, в том числе: вклад источников предприятия 0,09.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.4.2.

Таблица № 1.4.2 - Параметры расчетных точек

		Координаты		T
Наименование	Х	Υ	высота, м	Тип точки
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)				
1	-114,86	-27	2	Точка в промзоне
2	71,45	-23,24	2	Точка в промзоне
3	77,4	-149,8	2	Точка в промзоне
4	-121	-145,8	2	Точка в промзоне
5	-33,56	216,13	2	Точка на границе ОС33
6	258,45	31,56	2	Точка на границе ОС33
7	213,17	-273,71	2	Точка на границе ОС33
8	-160,34	-348,01	2	Точка на границе ОС33
9	-317,55	-53,88	2	Точка на границе ОС33
10	438,5	145,9	2	Точка в жилой зоне
11	440,5	46,7	2	Точка в жилой зоне
12	686,6	-80,3	2	Точка в жилой зоне
13	613,2	141,9	2	Точка в жилой зоне
14	250	473,3	2	Точка в жилой зоне
15	119,1	481,2	2	Точка в жилой зоне
16	-117,1	517	2	Точка в жилой зоне
17	-307,6	298,7	2	Точка в жилой зоне
18	-490,1	12,9	2	Точка в жилой зоне
19	-654,8	-342,3	2	Точка в жилой зоне
20	-335,4	-542,7	2	Точка в жилой зоне
21	109,1	-632	2	Точка в жилой зоне
22	335,4	-483,2	2	Точка в жилой зоне
23	593,3	-479,2	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.4.3.

Таблица № 1.4.3 - Параметры расчетных площадок

		Координаты ср	единной линии		Illumuun	Рисота	Шаг	III.a. (22	
Наименование	точка 1		точ	ка 2	Ширина, м	Высота, м	сетки, м	Шаг С33, м	
	X_1	Y ₁	X ₂	Y ₂					
1	2	3	4	5	6	7	8	9	
1	-900	-8,18	925,88	-8,18	1483,636	2	200	-	

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.4.4.

Таблица № 1.4.4 - Параметры источников загрязнения атмосферы

No		Duran		Пар	аметры ГВ	C	Кос	ординаты		.,	Опас.	Загря	зняющее веще	СТВО	Макс.	Расст.
Nº N3A	Тип		Диам етр, м	скорость,	объем,	темп.,	X_1	Y ₁	шири	К рел	скор. ветра,	код	масса	К	конц-я <i>,</i> д.ПДК	до ма- ксиму-
				м/с	M³/C	°C	X_2	Y ₂	на, м		M/c		выброса, г/с	oc.	AA	ма, м
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Объен Площ Цех:		a:		ект №1 Про цадка №1 №1	омплощад	ка №2										
1	4	5	80	6	30159,3	20	-114,59	-54,27	54,6	1	274,56	2908	3,014	3	0,234	446,86
							-31,45	-53,46								
2	4	4	60	6	16964,6	20	11,42	-50,16	53,8	1	257,4	2908	1,441	3	0,2	346,13
							71,45	-50,16								
3	4	5	80	4	20106,2	20	-11,9	-103,87	32,3	1	183,04	2908	0,648	3	0,075	364,86
							73,58	-102,52								
4	4	7	20	5	1570,8	20	-55,41	-131,38	29,2	1	47,667	2908	0,459	3	0,134	223,43
							-4,46	-134,49								

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.4.5.

Таблица № 1.4.5 - Значения максимальных концентраций в расчетных точках

Наименование	Тип	Ко	ординаты			етная нтрация	Фон,	Вклад предпр	Ветер: направлен ие;	Пл., Цех, ИЗА	Вклад	ИЗА
1	I MII	Х	Y	высот а, м	д.ПДК	Mr/M³	д.ПДК 8	иятия <i>,</i> д.ПДК	скорость, °↑м/с	пл., цех, иза	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площад	цка 1(СК	Основная СК)										
1	Пром.	-114,86	-27	2	0,055	0,0165	-	0,055	141 ₹ 26	1.1.4	0,053	97,1
2	Пром.	71,45	-23,24	2	0,062	0,0185	-	0,062	223 🗷 26	1.1.4	0,058	93,1
3	Пром.	77,4	-149,8	2	0,051	0,0153	-	0,051	279 → 26	1.1.4	0,051	99,8
4	Пром.	-121	-145,8	2	0,046	0,0138	-	0,046	81 ← 26	1.1.4	0,043	92,7

Наименование	Тип	Ко	ординаты			етная нтрация	Фон,	Вклад предпр	Ветер: направлен ие;	Пл., Цех, ИЗА	Вклад	ИЗА
Havimenobaline	17111	Х	Υ	высот а, м	д.ПДК	Mr/M³	д.ПДК	иятия, д.ПДК	скорость, °↑м/с	ты., цех, н эл	д. ПДК	%
1	2	3	4	5	6	7	8	9	10	11	12	13
5	OC33	-33,56	216,13	2	0,08	0,024	-	0,08	179 ↑ 26	1.1.4	0,073	90,4
6	OC33	258,45	31,56	2	0,088	0,0264	-	0,088	241 7 26	1.1.4	0,076	86,5
7	OC33	213,17	-273,71	2	0,087	0,026	-	0,087	301 ≽ 26	1.1.4	0,079	90,5
8	OC33	-160,34	-348,01	2	0,092	0,0276	-	0,092	32 ∠ 26	1.1.4	0,075	81,2
9	OC33	-317,55	-53,88	2	0,085	0,0254	-	0,085	105 ← 26	1.1.4	0,08	94,2
10	Жил.	438,5	145,9	2	0,084	0,0253	-	0,084	240 🗷 26	1.1.4	0,06	71,6
11	Жил.	440,5	46,7	2	0,084	0,025	-	0,084	250 → 26	1.1.4	0,064	76,1
12	Жил.	686,6	-80,3	2	0,078	0,0235	-	0,078	268 → 26	1.1.4	0,045	57,9
13	Жил.	613,2	141,9	2	0,08	0,024	-	0,08	249 → 26	1.1.4	0,047	58,4
14	Жил.	250	473,3	2	0,079	0,0237	-	0,079	205 🗷 26	1.1.4	0,051	65,2
15	Жил.	119,1	481,2	2	0,078	0,0235	-	0,078	193 ↑ 26	1.1.4	0,054	68,5
16	Жил.	-117,1	517	2	0,076	0,023	-	0,076	172 ↑ 26	1.1.4	0,052	68,5
17	Жил.	-307,6	298,7	2	0,081	0,0243	-	0,081	146 ₹ 26	1.1.4	0,062	75,9
18	Жил.	-490,1	12,9	2	0,082	0,0246	-	0,082	106 ← 26	1.1.4	0,064	78
19	Жил.	-654,8	-342,3	2	0,083	0,025	-	0,083	70 ← 26	1.1.4	0,051	61,7
20	Жил.	-335,4	-542,7	2	0,09	0,027	-	0,09	37 ∠ 26	1.1.4	0,063	69,6
21	Жил.	109,1	-632	2	0,085	0,0255	-	0,085	345 ↓ 26	1.1.4	0,062	72,7
22	Жил.	335,4	-483,2	2	0,084	0,025	-	0,084	315 ≽ 26	1.1.4	0,063	74,6
23	Жил.	593,3	-479,2	2	0,078	0,0233	-	0,078	301 ≽ 26	1.1.4	0,046	59,5

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.4.6.

Таблица № 1.4.6 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

Nº	Коорд	инаты	Расчетная	концентрация	Фон, д.ПДК	Вклад предприятия,	Ве	тер
142	Х	Υ	д.ПДК	MΓ/M³	Фон, д.пдк	д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
1	-900	-750	0,069	0,0208	-	0,069	53 ∠	26
2	-700	-750	0,075	0,0224	-	0,075	46 ∠	26
3	-500	-750	0,08	0,024	-	0,08	37 ∠	26
4	-300	-750	0,083	0,025	-	0,083	24 ∠	26
5	-100	-750	0,084	0,025	-	0,084	7 ↓	26
6	100	-750	0,082	0,0246	-	0,082	349 ↓	26
7	300	-750	0,079	0,0237	-	0,079	333 万	26
8	500	-750	0,075	0,0226	-	0,075	321 🛚	26
9	700	-750	0,072	0,0215	-	0,072	312 🛚	26
10	900	-750	0,067	0,02	-	0,067	306 万	26
11	-900	-550	0,073	0,022	-	0,073	63 ∠	26
12	-700	-550	0,079	0,0237	-	0,079	57 ∠	26
13	-500	-550	0,086	0,0257	-	0,086	48 ∠	26

Nº	Коорд	цинаты	Расчетная концентрация		фон в ПЛУ	Вклад	Ве	тер
Mg	Х	Y	д.ПДК	WL/W3	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с
1	2	3	4	5	6	7	8	9
14	-300	-550	0,091	0,0273	-	0,091	33 ∠	26
15	-100	-550	0,09	0,027	-	0,09	10 ↓	26
16	100	-550	0,087	0,026	-	0,087	343 ↓	26
17	300	-550	0,084	0,025	-	0,084	323 🔽	26
18	500	-550	0,079	0,0237	-	0,079	310 🗵	26
19	700	-550	0,075	0,0224	-	0,075	302 🗵	26
20	900	-550	0,07	0,021	-	0,07	296 🛚	26
21	-900	-350	0,075	0,0225	-	0,075	74 ←	26
22	-700	-350	0,081	0,0243	-	0,081	70 ←	26
23	-500	-350	0,089	0,0266	-	0,089	64 ∠	26
24	-300	-350	0,096	0,029	-	0,096	51 ∠	26
25	-100	-350	0,083	0,025	-	0,083	19 ↓	26
26	100	-350	0,088	0,0264	-	0,088	329 🔽	26
27	300	-350	0,086	0,0257	-	0,086	304 🔽	26
28	500	-350	0,08	0,024	-	0,08	294 🛚	26
29	700	-350	0,077	0,023	-	0,077	289 →	26
30	900	-350	0,072	0,0216	-	0,072	286 →	26
31	-900	-150	0,075	0,0225	-	0,075	87 ←	26
32	-700	-150	0,08	0,024	-	0,08	86 ←	26
33	-500	-150	0,085	0,0255	-	0,085	86 ←	26
34	-300	-150	0,089	0,0266	-	0,089	86 ←	26
35	-100	-150	0,037	0,011	-	0,037	76 ←	26
36	100	-150	0,06	0,018	-	0,06	278 →	26
37	300	-150	0,084	0,0253	-	0,084	274 →	26
38	500	-150	0,081	0,0243	-	0,081	274 →	26
39	700	-150	0,078	0,0233	-	0,078	274 →	26
40	900	-150	0,073	0,022	-	0,073	273 →	26
41	-900	50	0,074	0,022	-	0,074	99 ←	26
42	-700	50	0,079	0,0236	-	0,079	103 ←	26
43	-500	50	0,081	0,0244	-	0,081	109 ←	26
44	-300	50	0,084	0,025	-	0,084	123 ↖	26
45	-100	50	0,072	0,0215	-	0,072	159 个	26
46	100	50	0,082	0,0245	-	0,082	215 🗷	26
47	300	50	0,088	0,026	-	0,088	242 🗷	26
48	500	50	0,082	0,0247	-	0,082	253 →	26
49	700	50	0,078	0,0234	-		258 →	26
50	900	50	0,073	0,022	-		261 →	26
51	-900	250	0,072	0,0216	-	0,072	111 ←	26
52	-700	250	0,076	0,023	-	0,076	117 🤼	26
53	-500	250	0,08	0,024	-	0,08	127 🤼	26
54	-300	250	0,083	0,025	-	0,083	144 🤼	26

Продолжение таблицы 1.4.6

No	Коорд	инаты	Расчетная ко	онцентрация	ф ПЛУ	Вклад		Ве	тер
Nº	Х	Y	д.ПДК	MΓ/M³	- Фон, д.ПДК	предприятия, д.ПДК	напра	вл., °	скорость, м/с
1	2	3	4	5	6	7	8	}	9
55	-100	250	0,082	0,0245	-	0,082	170	\uparrow	26
56	100	250	0,083	0,025	-	0,083	198	\uparrow	26
57	300	250	0,087	0,026	-	0,087	221	7	26
58	500	250	0,082	0,0245	-	0,082	235	7	26
59	700	250	0,077	0,023	-	0,077	244	7	26
60	900	250	0,071	0,0214	-	0,071	249	\rightarrow	26
61	-900	450	0,069	0,0207	-	0,069	122	K	26
62	-700	450	0,073	0,022	-	0,073	129	K	26
63	-500	450	0,075	0,0226	-	0,075	139	Κ	26
64	-300	450	0,077	0,023	-	0,077	154	K	26
65	-100	450	0,077	0,0232	-	0,077	173	\uparrow	26
66	100	450	0,079	0,0236	-	0,079	192	1	26
67	300	450	0,08	0,024	-	0,08	209	7	26
68	500	450	0,077	0,023	-	0,077	223	7	26
69	700	450	0,073	0,022	-	0,073	233	7	26
70	900	450	0,069	0,0206	-	0,069	239	7	26
71	-900	650	0,065	0,0196	-	0,065	130	K	26
72	-700	650	0,069	0,0206	-	0,069	138	Κ	26
73	-500	650	0,071	0,0213	-	0,071	147	K	26
74	-300	650	0,073	0,0218	-	0,073	160	\uparrow	26
75	-100	650	0,073	0,022	-	0,073	174	\uparrow	26
76	100	650	0,074	0,022	-	0,074	189	1	26
77	300	650	0,074	0,022	-	0,074	203	7	26
78	500	650	0,072	0,0215	-	0,072	215	7	26
79	700	650	0,069	0,0207	-	0,069	224	7	26
80	900	650	0,065	0,0196	-	0,065	231	7	26

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:5000** на рисунке 1.4.1.

Картограмма значений наибольших концен менев 0,05

0,05 - 0,1

1.5 Мажорантный расчет загрязнения по всем веществам и группам суммаций

Расчёт загрязнения для мажоранты проводится по всем источникам загрязнения атмосферы и по всем веществам и группам суммации. При этом результат расчёта для каждой расчётной точки представляет собой наибольшее значение из максимальных расчётных концентраций, полученных для данной точки отдельно по каждому из веществ и групп суммации.

Сведения о типе и координатах точек, в которых выполнялся расчет загрязнения атмосферы, приведены в таблице 1.5.1.

Таблица № 1.5.1 - Параметры расчетных точек

Наименование		Координаты		Тип точки
	Х	Y	высота, м	
1	2	3	4	5
Расчетная площадка 1(СК Основная СК)		•	·	
1	-114,86	-27	2	Точка в промзоне
2	71,45	-23,24	2	Точка в промзоне
3	77,4	-149,8	2	Точка в промзоне
4	-121	-145,8	2	Точка в промзоне
5	-33,56	216,13	2	Точка на границе ОС33
6	258,45	31,56	2	Точка на границе ОС33
7	213,17	-273,71	2	Точка на границе ОС33
8	-160,34	-348,01	2	Точка на границе ОС33
9	-317,55	-53,88	2	Точка на границе ОС33
10	438,5	145,9	2	Точка в жилой зоне
11	440,5	46,7	2	Точка в жилой зоне
12	686,6	-80,3	2	Точка в жилой зоне
13	613,2	141,9	2	Точка в жилой зоне
14	250	473,3	2	Точка в жилой зоне
15	119,1	481,2	2	Точка в жилой зоне
16	-117,1	517	2	Точка в жилой зоне
17	-307,6	298,7	2	Точка в жилой зоне
18	-490,1	12,9	2	Точка в жилой зоне
19	-654,8	-342,3	2	Точка в жилой зоне
20	-335,4	-542,7	2	Точка в жилой зоне
21	109,1	-632	2	Точка в жилой зоне
22	335,4	-483,2	2	Точка в жилой зоне
23	593,3	-479,2	2	Точка в жилой зоне

Сведения о координатах расчетных площадок, шаге расчетной сетки, каждый узел которой образует расчетную точку, приведены в таблице 1.5.2.

Таблица № 1.5.2 - Параметры расчетных площадок

		Координаты ср	единной линии			D	Illas	C22
Наименование	точка 1		точ	ка 2	Ширина, м	Высота, м	Шаг сетки, м	Шаг С33, м
	X ₁	Υ ₁	X ₂	Y ₂				
1	2	3	4	5	6	7	8	9
1	-900	-8,18	925,88	-8,18	1483,636	2	200	-

Для каждого источника определены опасная скорость ветра, максимальная концентрация выброса в долях ПДК и расстояние, на котором достигается максимальная концентрация.

Параметры источников загрязнения атмосферы, учитываемых в данном варианте расчета, приведены в таблице 1.5.3.

Таблица № 1.5.3 - Параметры источников загрязнения атмосферы

No	Тип	Высо та, м	Пиоля	Пизм	Пиол	Пиалл	Пиом	Пиом	Пиом	Параметры ГВС		Координаты			.,	Опас.	Загря	Загрязняющее вещество М			Расст.
Nº N3A			диам етр, м	р, м скорость,	объем,	темп.,	X ₁	Y ₁	шири	- К рел	скор. ветра, м/с	код	масса	К	конц-я, д.ПДК	до ма- ксиму- ма, м					
				м/с	M³/C	°C	X ₂	Y ₂	на, м				выброса, г/с	oc.							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17					
Объен	¢τ:		1. Объект №1 Промплощадка №2																		
Площ	Площадка:		1. Площадка №1																		
Цех:	Цех:		1. Цех №1																		
1	4	5	80	6	30159,3	20	-121	-18,8	54,6	1	274,56	2908	3,014	3	0,234	446,86					
							-31,8	-17,93													
2	4	4	60	6	16964,6	20	-6	-50,16	53,8	1	257,4	2908	1,441	3	0,2	346,13					
							71,45	-50,16													
3	4	5	80	4	20106,2	20	-25,8	-102,2	32,3	1	183,04	2908	0,648	3	0,075	364,86					
							79,59	-100,54													
4	4	7	20	5	1570,8	20	-71,4	-129,9	29,2	1	47,667	2908	0,459	3	0,134	223,43					
							-6	-133,9													
5	1	6	0,3	28,4	2,007	120	-6,86	-147,99	-	1	1,899	337	0,145	1	0,008	136,63					
												301	0,05	1	0,067	136,63					

Значения приземных концентраций в каждой расчетной точке в атмосферном воздухе представляют собой суммарные максимально достижимые концентрации, соответствующие наиболее неблагоприятным метеорологическим условиям. Значения максимальных концентраций в расчетных точках приведены в таблице 1.5.4.

Таблица № 1.5.4 - Значения максимальных концентраций в расчетных точках

		Ко	Расчетная концентрация		Фон.	Вклад	Ветер: направлен		Вклад	ИЗА		
Наименование	Тип	Х	Υ	высот а, м	д.ПДК	код ЗВ	Фон, предпр д.ПДК иятия, д.ПДК	ие; скорость, °↑м/с	Пл., Цех, ИЗА	д. ПДК	%	
1	2	3	4	5	6	7	8	9	10	11	12	13
Расчетная площа	дка 1(СК	Основная СК)										
1	Пром.	-114,86	-27	2	0,065	301	-	0,065	134 √ 2	1.1.5	0,065	100
2	Пром.	71,45	-23,24	2	0,067	301	-	0,067	215 7 1,9	1.1.5	0,067	100
3	Пром.	77,4	-149,8	2	0,06	301	-	0,06	281 → 1,9	1.1.5	0,06	100
4	Пром.	-121	-145,8	2	0,067	301	-	0,067	84 ← 1,9	1.1.5	0,067	100
5	OC33	-33,56	216,13	2	0,08	2908	-	0,08	179 个 26	1.1.4	0,073	90,4
6	OC33	258,45	31,56	2	0,088	2908	-	0,088	241 7 26	1.1.4	0,076	86,5
7	OC33	213,17	-273,71	2	0,087	2908	-	0,087	301 ⅓ 26	1.1.4	0,079	90,5
8	OC33	-160,34	-348,01	2	0,092	2908	-	0,092	32 ∠ 26	1.1.4	0,075	81,2
9	OC33	-317,55	-53,88	2	0,085	2908	-	0,085	105 ← 26	1.1.4	0,08	94,2
10	Жил.	438,5	145,9	2	0,084	2908	-	0,084	240 7 26	1.1.4	0,06	71,6
11	Жил.	440,5	46,7	2	0,084	2908	-	0,084	250 → 26	1.1.4	0,064	76,1
12	Жил.	686,6	-80,3	2	0,078	2908	-	0,078	268 → 26	1.1.4	0,045	57,9
13	Жил.	613,2	141,9	2	0,08	2908	-	0,08	249 → 26	1.1.4	0,047	58,4
14	Жил.	250	473,3	2	0,079	2908	-	0,079	205 7 26	1.1.4	0,051	65,2
15	Жил.	119,1	481,2	2	0,078	2908	-	0,078	193 ↑ 26	1.1.4	0,054	68,5
16	Жил.	-117,1	517	2	0,076	2908	-	0,076	172 ↑ 26	1.1.4	0,052	68,5
17	Жил.	-307,6	298,7	2	0,081	2908	-	0,081	146 ₹ 26	1.1.4	0,062	75,9
18	Жил.	-490,1	12,9	2	0,082	2908	-	0,082	106 ← 26	1.1.4	0,064	78
19	Жил.	-654,8	-342,3	2	0,083	2908	-	0,083	70 ← 26	1.1.4	0,051	61,7
20	Жил.	-335,4	-542,7	2	0,09	2908	-	0,09	37 ∠ 26	1.1.4	0,063	69,6
21	Жил.	109,1	-632	2	0,085	2908	-	0,085	345 ↓ 26	1.1.4	0,062	72,7
22	Жил.	335,4	-483,2	2	0,084	2908	-	0,084	315 ≽ 26	1.1.4	0,063	74,6
23	Жил.	593,3	-479,2	2	0,078	2908	-	0,078	301 ≽ 26	1.1.4	0,046	59,5

Результаты расчета по расчетной площадке № 1 приведены в таблице 1.5.5.

Таблица № 1.5.5 - Значения максимальных концентраций в узлах сетки расчетной площадки № 1

Nº	Коорд	цинаты	Расчетная	концентрация	Фон в Пли	Вклад	Ветер		
NΩ	Х	Y	д.ПДК	код 3В	Фон, д.ПДК	предприятия, д.ПДК	направл., °	скорость, м/с	
1	2	3	4	5	6	7	8	9	
1	-900	-750	0,069	2908	-	0,069	53 ∠	26	
2	-700	-750	0,075	2908	-	0,075	46 ∠	26	
3	-500	-750	0,08	2908	-	0,08	37 ∠	26	
4	-300	-750	0,083	2908	-	0,083	24 ∠	26	
5	-100	-750	0,084	2908	-	0,084	7 ↓	26	
6	100	-750	0,082	2908	-	0,082	349 ↓	26	
7	300	-750	0,079	2908	-	0,079	333 7	26	
8	500	-750	0,075	2908	-	0,075	321 🛚	26	
9	700	-750	0,072	2908	-	0,072	312 🗵	26	
10	900	-750	0,067	2908	-	0,067	306 🗸	26	
11	-900	-550	0,073	2908	-	0,073	63 ∠	26	
12	-700	-550	0,079	2908	-	0,079	57 ∠	26	
13	-500	-550	0,086	2908	-	0,086	48 ∠	26	
14	-300	-550	0,091	2908	-	0,091	33 ∠	26	
15	-100	-550	0,09	2908	-	0,09	10 ↓	26	
16	100	-550	0,087	2908	-	0,087	343 ↓	26	
17	300	-550	0,084	2908	-	0,084	323 🛚	26	
18	500	-550	0,079	2908	-	0,079	310 🗵	26	
19	700	-550	0,075	2908	-	0,075	302 🗵	26	
20	900	-550	0,07	2908	-	0,07	296 🛚	26	
21	-900	-350	0,075	2908	-	0,075	74 ←	26	
22	-700	-350	0,081	2908	-	0,081	70 ←	26	
23	-500	-350	0,089	2908	-	0,089	64 ∠	26	
24	-300	-350	0,096	2908	-	0,096	51 ∠	26	
25	-100	-350	0,083	2908	-	0,083	19 ↓	26	
26	100	-350	0,088	2908	-	0,088	329 🛚	26	
27	300	-350	0,086	2908	-	0,086	304 🗵	26	
28	500	-350	0,08	2908	-	0,08	294 🗵	26	
29	700	-350	0,077	2908	-	0,077	289 →	26	
30	900	-350	0,072	2908	-	0,072	286 →	26	
31	-900	-150	0,075	2908	-	0,075	87 ←	26	
32	-700	-150	0,08	2908	-	0,08	86 ←	26	
33	-500	-150	0,085	2908	-	0,085	86 ←	26	
34	-300	-150	0,089	2908	-	0,089	86 ←	26	
35	-100	-150	0,064	301	-	0,064	80 ←	1,9	
36	100	-150	0,066	301	-	0,066	279 →	1,9	
37	300	-150	0,084	2908	-	0,084	274 →	26	
38	500	-150	0,081	2908	-	0,081	274 →	26	
39	700	-150	0,078	2908	-	0,078	274 →	26	
40	900	-150	0,073	2908	-	0,073	273 →	26	
41	-900	50	0,074	2908	-	0,074	99 ←	26	

Продолжение таблицы 1.5.5

Nº	Коорд	инаты	Расчетная	концентрация	Фон, д.ПДК	Вклад предприятия,	Ветер		
IV≅	Х	Υ	д.ПДК	код ЗВ	- Ψοη, μ.π.μ.	д.ПДК	направл., °	скорость, м/с	
1	2	3	4	5	6	7	8		
42	-700	50	0,079	2908	-	0,079	103 ←	26	
43	-500	50	0,081	2908	-	0,081	109 ←	26	
44	-300	50	0,084	2908	-	0,084	123 ↖	26	
45	-100	50	0,072	2908	-	0,072	159 个	26	
46	100	50	0,082	2908	-	0,082	215 🗷	26	
47	300	50	0,088	2908	-	0,088	242 🗷	26	
48	500	50	0,082	2908	-	0,082	253 →	26	
49	700	50	0,078	2908	-	0,078	258 →	26	
50	900	50	0,073	2908	-	0,073	261 →	26	
51	-900	250	0,072	2908	-	0,072	111 ←	26	
52	-700	250	0,076	2908	-	0,076	117 ┖	26	
53	-500	250	0,08	2908	-	0,08	127 ↖	26	
54	-300	250	0,083	2908	-	0,083	144 ↖	26	
55	-100	250	0,082	2908	-	0,082	170 个	26	
56	100	250	0,083	2908	-	0,083	198 ↑	26	
57	300	250	0,087	2908	-	0,087	221 🗷	26	
58	500	250	0,082	2908	-	0,082	235 🗷	26	
59	700	250	0,077	2908	-	0,077	244 🗷	26	
60	900	250	0,071	2908	-	0,071	249 →	26	
61	-900	450	0,069	2908	-	0,069	122 仄	26	
62	-700	450	0,073	2908	-	0,073	129 ↖	26	
63	-500	450	0,075	2908	-	0,075	139 ↖	26	
64	-300	450	0,077	2908	-	0,077	154 ↖	26	
65	-100	450	0,077	2908	-	0,077	173 ↑	26	
66	100	450	0.079	2908	_	0,079	192 ↑	26	
67	300	450	0,08	2908	-	0,08	209 🗷	26	
68	500	450	0,077	2908	-	0,077	223 🗷	26	
69	700	450	0,073	2908	-	0,073	233 7	26	
70	900	450	0,069	2908	-	0,069	239 7	26	
71	-900	650	0,065	2908	-	0,065	130 ↖	26	
72	-700	650	0,069	2908	_	0,069	138 ↖	26	
73	-500	650	0,071	2908	_	0,071	147 K	26	
74	-300	650	0,073	2908	-	0,073	160 ↑	26	
75	-100	650	0,073	2908	_	0,073	174 ↑	26	
76	100	650	0,074	2908	-	0,074	189 ↑	26	
77	300	650	0.074	2908	-	0,074	203 7	26	
78	500	650	0,072	2908	_	0,072	215 7	26	
79	700	650	0,069	2908	_	0,069	224 7	26	
80	900	650	0.065	2908	_	0.065	231 7	26	

Ситуационная карта-схема района размещения предприятия, с нанесенными изолиниями расчётных концентраций, выраженных в долях ПДК, по расчетной площадке № **1** приведена в масштабе **1:5000** на рисунке 1.5.1.

Картограмма значений наибольших концен 0,05 – 0,1